Mots-clés : trace formula
@article{UFA_2020_12_4_a7,
author = {Z. Yu. Fazullin and N. F. Abuzyarova},
title = {On necessary and sufficient condition in theory of regularized traces},
journal = {Ufa mathematical journal},
pages = {90--98},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a7/}
}
Z. Yu. Fazullin; N. F. Abuzyarova. On necessary and sufficient condition in theory of regularized traces. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 90-98. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a7/
[1] I.M. Gelfand, B.M. Levitan, “On a simple identity for eigenvalues of second differential oeprator”, Doklady AN SSSR, 88 (1953), 593–596 (in Russian) | Zbl
[2] L.A. Dikii, “On a formula of Gelfand-Levitan”, Uspekhi Matem. Nauk, 8:2 119–123 (1953) (in Russian) | MR
[3] V.A. Sadovnichii, V.E. Podolskii, “Traces of operators”, Russ. Math. Surveys, 61:5 (2006), 885–953 | DOI | MR | Zbl
[4] V.A. Sadovnichij, V.V. Dubrovskij, V.A. Lyubishkin, “Traces of discrete operators”, Sov. Math. Dokl., 25 (1982), 759–761 | MR | Zbl
[5] V.A. Sadovnichii, V.E. Podolskii, “Traces of operators with relatively compact perturbations”, Sb. Math., 193:2 (2002), 279–302 | DOI | MR
[6] Kh.Kh. Murtazin, Z.Yu. Fazullin, “Non-nuclear perturbations of discrete operators and trace formulae”, Sb. Math., 196:12 (2005), 1841–1874 | DOI | MR | Zbl
[7] V.A. Sadovnichii, V. V. Dubrovskii, “A classical regularized trace formula for the eigenvalues of the Laplace-Beltrami operator with a potential on the sphere $S^2$”, Soviet Math. Dokl., 44:1 (1992), 56–58 | MR
[8] V.A. Sadovnichij, Z.Yu. Fazullin, “A formula for the first regularized trace of a perturbed Laplace-Beltrami operator”, Diff. Equat., 37:3 (2001), 430–438 | DOI | MR | Zbl
[9] Z.Yu. Fazullin, Kh.Kh. Murtazin, “Regularized trace of a two-dimensional harmonic oscillator”, Sb. Math., 192:5 (2001), 725–761 | DOI | MR | Zbl
[10] Kh.Kh. Murtazin, F.Yu. Fazullin, “The spectrum and trace formula for the two-dimensional Schrödinger operator in a homogeneous magnetic field”, Dokl. Math., 67:3 (2003), 426–428 | MR | Zbl
[11] E. Korotyaev, A. Pushniski, “A trace formula and high-energy spectral asymptotics for the perturbed Landau hamiltonian”, Func. Anal., 217:1 (2004), 221–248 | DOI | MR | Zbl
[12] A.I. Atnagulov, V.A. Sadovnichii, Z.Yu. Fazullin, “Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula”, Ufa Math. J., 8:3 (2016), 22–40 | DOI | MR | Zbl
[13] Z.Yu. Fazullin, I.G. Nugaeva, “Spectrum and a trace formula for a compactly supported perturbation of the 2D harmonic oscillator in a strip”, Diff. Equat., 55:5 (2019), 677–687 | DOI | MR | Zbl