@article{UFA_2020_12_4_a6,
author = {I. Kh. Musin},
title = {On {Fourier{\textendash}Laplace} transform of a class of generalized functions},
journal = {Ufa mathematical journal},
pages = {78--89},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a6/}
}
I. Kh. Musin. On Fourier–Laplace transform of a class of generalized functions. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 78-89. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a6/
[1] V.S. Vladimirov, Generalized functions in mathematical physics, Mir Publishers, M., 1979
[2] De Roever J. W., Complex Fourier transformation and analytic functionals with unbounded carriers, Mathematisch Centrum, Amsterdam, 1977 | MR
[3] I.Kh. Musin, P.V. Fedotova, “A theorem of Paley-Wiener type for ultradistributions”, Math. Notes, 85:6 (2009), 848–867 | DOI | MR | Zbl
[4] M. Neymark, “On the Laplace transform of functionals on classes of infinitely differentiable functions”, Ark. math., 7:6 (1969), 577–594 | DOI | MR | Zbl
[5] B.A. Taylor, “Analytically uniform spaces of infinitely differentiable functions”, Communications on pure and applied mathematics, 24:1 (1971), 39–51 | DOI | MR | Zbl
[6] Il'dar Kh. Musin, Polina V. Yakovleva, “On a space of smooth functions on a convex unbounded set in ${\mathbb{R}}^n$ admitting holomorphic extension in ${\mathbb{C}}^n$”, Central European Journal of Mathematics, 10:2 (2012), 665–692 | DOI | MR | Zbl
[7] J. Sebastian-e-Silva, “On some classes of locally convex spaces important in applications”, Matematika. Sbornik Perevodov, 1 (1957), 60–77 (in Russian)
[8] V.V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet-Schwartz and dual Fréchet-Schwartz spaces”, Russ. Math. Surv., 34:4 (1979), 105–143 | DOI | MR | Zbl | Zbl
[9] R.E. Edwards, Functional analysis. Theory and applications, Holt Rinehart and Winston, New York, 1965 | MR | Zbl
[10] I.Kh. Musin, “Fourier-Laplace transformation of functionals on a weighted space of infinitely smooth functions”, Sb. Math., 191:10 (2000), 1477–1506 | DOI | MR | Zbl
[11] A.P. Robertson, W. Robertson, Topological vector spaces, Cambridge University Press, Cambridge, 1964 | MR | MR | Zbl