@article{UFA_2020_12_4_a5,
author = {Kh. K. Ishkin and R. I. Marvanov},
title = {On localization conditions for spectrum of model operator for {Orr{\textendash}Sommerfeld} equation},
journal = {Ufa mathematical journal},
pages = {64--77},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a5/}
}
TY - JOUR AU - Kh. K. Ishkin AU - R. I. Marvanov TI - On localization conditions for spectrum of model operator for Orr–Sommerfeld equation JO - Ufa mathematical journal PY - 2020 SP - 64 EP - 77 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a5/ LA - en ID - UFA_2020_12_4_a5 ER -
Kh. K. Ishkin; R. I. Marvanov. On localization conditions for spectrum of model operator for Orr–Sommerfeld equation. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 64-77. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a5/
[1] S.A. Stepin, “Non-selfadjoint singular perturbations and spectral properties of the Orr-Sommerfeld boundary-value problem”, Sb. Math., 188:1 (1997), 137–156 | DOI | MR | Zbl
[2] A.A. Shkalikov, “Spectral portraits of the Orr-Sommerfeld operator with large Reynolds numbers”, J. Math. Sci., 124:6 (2004), 5417–5441 | DOI | MR
[3] S.N. Tumanov, A.A. Shkalikov, “On the spectrum localization of the Orr-Sommerfeld problem for large Reynolds numbers”, Math. Notes., 72:4 (2002), 519–526 | MR | Zbl
[4] V.I. Pokotilo, A.A. Shkalikov, “Semiclassical approximation for a nonself-adjoint Sturm-Liouville problem with a parabolic potential”, Math. Notes, 86:3 (2009), 442–446 | DOI | MR | MR | Zbl
[5] Kh.K. Ishkin, “On localization of the spectrum of the problem with complex weight”, J. Math. Sci., 150:6 (2008), 2488–2499 | DOI | MR | Zbl
[6] Kh.K. Ishkin, A.V. Rezbayev, “On the Davies formula for the distribution of eigenvalues of a non-self-adjoint differential operator”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 153, 2018, 84–93 (in Russian) | MR
[7] Kh.K. Ishkin, “Necessary conditions for the localization of the spectrum of the Sturm-Liouville problem on a curve”, Math. Notes, 78:1 (2005), 64–75 | DOI | MR | Zbl
[8] B.V. Shabat, Introduction into complex analysis, v. 1, Nauka, M., 1985 (in Russian)
[9] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976 | MR | Zbl
[10] E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, v. II, Clarendon Press, Oxford, 1958 | MR | Zbl
[11] Kh.K. Ishkin, “A localization criterion for the spectrum of the Sturm-Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63 | DOI | MR | Zbl