Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 55-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the geometry of abstract radial functional Hilbert spaces
stable with respect to dividing and possessing an unconditional basis of reproducing kernels. We obtain  a simple necessary condition ensuring the existence of such bases in terms of the sequence $\| z^n\|$, $n\in \mathbb{N}\cup \{ 0\}$. We also   obtain a sufficient condition for the norm and the Bergman function of the space to be recovered by a sequence of the norms of  monomials. Two main statements we prove are as follows. Let $ H $ be a radial functional Hilbert space of entire functions stable with respect to  dividing and let the system of monomials $\{z^n\}$, $n\in \mathbb{N}\cup \{ 0\}$, be  complete in this space.
1. If the space $H$ possesses an unconditional basis of reproducing kernels, then
\begin{equation*}
\|z^n\| \asymp e^{u(n)},\quad n\in \mathbb{N}\cup \{0\},
\end{equation*}
where the sequence  $u(n)$ is convex, that is
\begin{equation*}
u(n+1)+u(n-1)-2u(n)\ge 0,\quad n\in \mathbb{N}.
\end{equation*} 2. Let $u_{n,k}=u(n)-u(k)-(u(n)-u(n-1))(n-k)$. If $\mathcal U$ is the matrix with entries $e^{2u_{n,k}}$, $n,k\in \mathbb{N}\cup \{ 0\}$, and
\begin{equation*}
\left \| \mathcal U\right \| :=\sup_n\left (\sum\limits_ke^ {2u_{n,k}}\right )^{\frac 12}\infty ,
\end{equation*}
then
2.1. the space $H$ as a Banach space is isomorphic to the space of entire functions with the norm
\begin{equation*}
\|F\|^2=\frac 1 {2\pi }\int\limits_0^\infty \int\limits_0^{2\pi }|F(re^{i\varphi }) |^2e^{-2\widetilde u(\ln r)}d\varphi d \widetilde u_+'(\ln r),
\end{equation*}
where  $\widetilde u$ is the Young conjugate of the piecewise-linear function $u(t)$;
2.2. the Bergman function of the space $H$ satisfies the condition
\begin{equation*}
K(z)\asymp e^{2\widetilde u(\ln |z|)},\quad z\in \mathbb{C}.
\end{equation*}
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hilbert spaces, entire functions, unconditional bases, reproducing kernels.
                    
                    
                    
                  
                
                
                @article{UFA_2020_12_4_a4,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Geometry of radial {Hilbert} spaces with unconditional bases of reproducing kernels},
     journal = {Ufa mathematical journal},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/}
}
                      
                      
                    TY - JOUR AU - K. P. Isaev AU - R. S. Yulmukhametov TI - Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels JO - Ufa mathematical journal PY - 2020 SP - 55 EP - 63 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/ LA - en ID - UFA_2020_12_4_a4 ER -
K. P. Isaev; R. S. Yulmukhametov. Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 55-63. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/
