Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels
Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 55-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the geometry of abstract radial functional Hilbert spaces stable with respect to dividing and possessing an unconditional basis of reproducing kernels. We obtain a simple necessary condition ensuring the existence of such bases in terms of the sequence $\| z^n\|$, $n\in \mathbb{N}\cup \{ 0\}$. We also obtain a sufficient condition for the norm and the Bergman function of the space to be recovered by a sequence of the norms of monomials. Two main statements we prove are as follows. Let $ H $ be a radial functional Hilbert space of entire functions stable with respect to dividing and let the system of monomials $\{z^n\}$, $n\in \mathbb{N}\cup \{ 0\}$, be complete in this space. 1. If the space $H$ possesses an unconditional basis of reproducing kernels, then \begin{equation*} \|z^n\| \asymp e^{u(n)},\quad n\in \mathbb{N}\cup \{0\}, \end{equation*} where the sequence $u(n)$ is convex, that is \begin{equation*} u(n+1)+u(n-1)-2u(n)\ge 0,\quad n\in \mathbb{N}. \end{equation*} 2. Let $u_{n,k}=u(n)-u(k)-(u(n)-u(n-1))(n-k)$. If $\mathcal U$ is the matrix with entries $e^{2u_{n,k}}$, $n,k\in \mathbb{N}\cup \{ 0\}$, and \begin{equation*} \left \| \mathcal U\right \| :=\sup_n\left (\sum\limits_ke^ {2u_{n,k}}\right )^{\frac 12}\infty , \end{equation*} then 2.1. the space $H$ as a Banach space is isomorphic to the space of entire functions with the norm \begin{equation*} \|F\|^2=\frac 1 {2\pi }\int\limits_0^\infty \int\limits_0^{2\pi }|F(re^{i\varphi }) |^2e^{-2\widetilde u(\ln r)}d\varphi d \widetilde u_+'(\ln r), \end{equation*} where $\widetilde u$ is the Young conjugate of the piecewise-linear function $u(t)$; 2.2. the Bergman function of the space $H$ satisfies the condition \begin{equation*} K(z)\asymp e^{2\widetilde u(\ln |z|)},\quad z\in \mathbb{C}. \end{equation*}
Keywords: Hilbert spaces, entire functions, unconditional bases, reproducing kernels.
@article{UFA_2020_12_4_a4,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Geometry of radial {Hilbert} spaces with unconditional bases of reproducing kernels},
     journal = {Ufa mathematical journal},
     pages = {55--63},
     year = {2020},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels
JO  - Ufa mathematical journal
PY  - 2020
SP  - 55
EP  - 63
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/
LA  - en
ID  - UFA_2020_12_4_a4
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels
%J Ufa mathematical journal
%D 2020
%P 55-63
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/
%G en
%F UFA_2020_12_4_a4
K. P. Isaev; R. S. Yulmukhametov. Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 55-63. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a4/

[1] N. Aronszajn, “Theory of reproducing kernels”, Transactions of the American Mathematical Society, 68:3 (1950), 337–404 | DOI | MR | Zbl

[2] S.V. Hruščev, N.K. Nikol'skii, B.S. Pavlov, “Unconditional Bases of exponentials and of reproducing kernels”, Complex Analysis and Spectral Theory, Lecture Notes in Mathematics, 864, 1981, 214–335 | DOI | MR

[3] A.F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR

[4] Yu.F. Korobeinik, “Representing systems”, Russ. Math. Surv., 36:1 (1981), 75–137 | DOI | MR | Zbl

[5] K.P. Isaev, “Representing exponential systems in spaces of analytical functions”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 161, 2019, 3–64 (in Russian)

[6] K.P. Isaev, K.V. Trounov, R.S. Yulmukhametov, “Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$”, Izv. Math., 83:2 (2019), 232–250 | DOI | MR | Zbl

[7] D.L. Russell, “On exponential bases for the Sobolev spaces over an interval”, J. Math. Anal. Appl., 87:2 (1982), 528–550 | DOI | MR | Zbl

[8] B.Ya. Levin, Yu.I. Lyubarskii, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR-Izv., 9:3 (1975), 621–662 | DOI | MR | MR | Zbl

[9] K.P. Isaev, “Riesz bases of exponents in Bergman spaces on convex polygons”, Ufimskij Matem. Zhurn., 2:1 (2010), 71–86 (in Russian) | Zbl

[10] V.I. Lutsenko, Unconditional bases of exponentials in Smirnov spaces, PhD thesis, Inst. Math. USC RAS, 1992 (in Russian)

[11] K.P. Isaev, R.S. Yulmukhametov, “The absence of unconditional bases of exponentials in Bergman spaces on non-polygonal domains”, Izv. Math., 71:6 (2007), 1145–1166 | DOI | MR | Zbl

[12] R.A. Bashmakov, A.A. Makhota, K.V. Trounov, “On absence conditions of unconditional bases of exponents”, Ufa Math. J., 7:2 (2015), 17–32 | DOI | MR

[13] K.P. Isaev, “On unconditional exponential bases in weighted spaces on interval of real axis”, Lobachevskii Journal of Mathematics, 38:1 (2017), 48–61 | DOI | MR | Zbl

[14] K. Seip, “Density theorems for sampling and interpolation in the Bargmann-Fock space I”, Reine Angew. Math., 429:1 (1992), 91–106 | MR | Zbl

[15] K. Seip, R. Wallsten, “Density theorems for sampling and interpolation in the Bargmann-Fock space II”, Reine Angew. Math., 429:1 (1992), 107–113 | MR | Zbl

[16] A. Borichev, R. Dhuez, K. Kellay, “Sampling and interpolation in large Bergman and Fock spaces”, Journal of Functional Analysis, 242:2 (2007), 563–606 | DOI | MR | Zbl

[17] A. Borichev, Yu. Lyubarskii, “Riesz bases of reproducing kernels in Fock type spaces”, Journal of the Institute of Mathematics of Jussieu, 9 (2010), 449–461 | DOI | MR | Zbl

[18] A. Baranov, Yu. Belov, A. Borichev, “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Studia Mathematica, 236:2 (2017), 127–142 | DOI | MR | Zbl

[19] K.P. Isaev, R.S. Yulmukhametov, “Unconditional bases in radial Hilbert spaces”, Vladikavkaz Matem. Zhurn., 22:3 (2020), 85–99 (in Russian) | MR

[20] V.I. Lutsenko, R.S. Yulmukhametov, “Generalization of the Paley-Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl | Zbl

[21] R.A. Bashmakov, K.P. Isaev, R.S. Yulmukhametov, “On geometric characteristics of convex functions and Laplace integrals”, Ufimskij Matem. Zhurn., 2:1 (2010), 3–16 (in Russian) | MR | Zbl