Mots-clés : existence of solution.
@article{UFA_2020_12_4_a3,
author = {E. S. Zhukovskiy and W. Merchela},
title = {On covering mappings in generalized metric spaces in studying implicit differential equations},
journal = {Ufa mathematical journal},
pages = {41--54},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/}
}
TY - JOUR AU - E. S. Zhukovskiy AU - W. Merchela TI - On covering mappings in generalized metric spaces in studying implicit differential equations JO - Ufa mathematical journal PY - 2020 SP - 41 EP - 54 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/ LA - en ID - UFA_2020_12_4_a3 ER -
E. S. Zhukovskiy; W. Merchela. On covering mappings in generalized metric spaces in studying implicit differential equations. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/
[1] A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl
[2] E.R. Avakov, A.V. Arutyunov, E.S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Diff. Equat., 45:5 (2009), 627–649 | DOI | MR | Zbl
[3] A.V. Arutyunov, E.S. Zhukovskii, S.E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Diff. Equat., 47:11 (2011), 1541–1555 | DOI | MR | Zbl
[4] E.S. Zhukovskii, E.A. Pluzhnikova, “Covering mappings in a product of metric spaces and boundary value problems for differential equations unsolved for the derivative”, Diff. Equat., 49:4 (2013), 420–436 | DOI | MR | Zbl
[5] E.S. Zhukovskii, E.A. Pluzhnikova, “On controlling objects whose motion is defined by implicit nonlinear differential equations”, Autom. Remote Control, 2015, no. 1, 24–43 | DOI | MR | Zbl
[6] A.V. Arutyunov, S.E. Zhukovskii, “Coincidence points of mappings in vector metric spaces with applications to differential equations and control systems”, Diff. Equat., 53:11 (2017), 1440–1448 | DOI | MR | Zbl
[7] A.V. Arutyunov, A.V. Greshnov, “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | MR | Zbl
[8] W. Merchela, “On Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov Univ. Rep. Ser. Natur. Techn. Sci., 23:121 (2018), 65–73 (in Russian)
[9] E.S. Zhukovskiy, W. Merchela, “On the continuous dependence on the parameter of the set of solutions of the operator equation”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 54 (2019), 27–37 (in Russian) | Zbl
[10] S. Benarab, E.S. Zhukovskii, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Matem. Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (in Russian)
[11] A.V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl
[12] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis, V.V. Obukhovskii, Introduction to the theory of multi-valued mappings and differential inclusions, Librokom, M., 2011 (in Russian) | MR
[13] N. Dunford, J.T. Schwartz, Linear operators, v. I, General theory, Interscience Publ., New York, 1958 | MR | Zbl
[14] N. Azbelev, V. Maksimov, L. Rakhmatullina, Introduction to the theory of linear functional differential equations, World Federation Publishers Comp., Atlanta, 1995 | MR | MR | Zbl