On covering mappings in generalized metric spaces in studying implicit differential equations
Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let on a set $X\neq \emptyset$ a metric $\rho :X\times X \to [0,\infty]$ be defined, while on $Y\neq\emptyset$ a distance $d :Y\times Y \to [0,\infty],$ be given, which satisfies only the identity axiom. We define the notion of covering and of Lipschitz property for the mappings $X\to Y$. We formulate conditions ensuring the existence of solutions $x\in X$ to equations of form $F(x,x)=y,$ $y \in Y,$ with a mapping $F:X\times X \to Y,$ being covering in one variable and Lipschitz in the other. These conditions are employed for studying the solvability of a functional equation with a deviation variable and of a Cauchy problem for an implicit differential equation. In order to do this, on the space $S$ of Lebesgue measurable functions $z:[0,1]\to \mathbb{R}$ we define the distance \begin{equation*} d (z_1,z_2)=\mathrm{vrai}\sup_{t\in[0,1]}\theta(z_1(t),z_2(t)),\qquad z_1,z_2\in S, \end{equation*} where each continuous function $\theta:\mathbb{R}\times \mathbb{R} \to [0,\infty) $ satisfies $\theta(z_1,z_2)=0$ if and only if $z_1=z_2.$
Keywords: covering mapping, metric space, functional equation with a deviating variable, ordinary differential equation
Mots-clés : existence of solution.
@article{UFA_2020_12_4_a3,
     author = {E. S. Zhukovskiy and W. Merchela},
     title = {On covering mappings in generalized metric spaces in studying implicit differential equations},
     journal = {Ufa mathematical journal},
     pages = {41--54},
     year = {2020},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - W. Merchela
TI  - On covering mappings in generalized metric spaces in studying implicit differential equations
JO  - Ufa mathematical journal
PY  - 2020
SP  - 41
EP  - 54
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/
LA  - en
ID  - UFA_2020_12_4_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A W. Merchela
%T On covering mappings in generalized metric spaces in studying implicit differential equations
%J Ufa mathematical journal
%D 2020
%P 41-54
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/
%G en
%F UFA_2020_12_4_a3
E. S. Zhukovskiy; W. Merchela. On covering mappings in generalized metric spaces in studying implicit differential equations. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/

[1] A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[2] E.R. Avakov, A.V. Arutyunov, E.S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Diff. Equat., 45:5 (2009), 627–649 | DOI | MR | Zbl

[3] A.V. Arutyunov, E.S. Zhukovskii, S.E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Diff. Equat., 47:11 (2011), 1541–1555 | DOI | MR | Zbl

[4] E.S. Zhukovskii, E.A. Pluzhnikova, “Covering mappings in a product of metric spaces and boundary value problems for differential equations unsolved for the derivative”, Diff. Equat., 49:4 (2013), 420–436 | DOI | MR | Zbl

[5] E.S. Zhukovskii, E.A. Pluzhnikova, “On controlling objects whose motion is defined by implicit nonlinear differential equations”, Autom. Remote Control, 2015, no. 1, 24–43 | DOI | MR | Zbl

[6] A.V. Arutyunov, S.E. Zhukovskii, “Coincidence points of mappings in vector metric spaces with applications to differential equations and control systems”, Diff. Equat., 53:11 (2017), 1440–1448 | DOI | MR | Zbl

[7] A.V. Arutyunov, A.V. Greshnov, “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | MR | Zbl

[8] W. Merchela, “On Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov Univ. Rep. Ser. Natur. Techn. Sci., 23:121 (2018), 65–73 (in Russian)

[9] E.S. Zhukovskiy, W. Merchela, “On the continuous dependence on the parameter of the set of solutions of the operator equation”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 54 (2019), 27–37 (in Russian) | Zbl

[10] S. Benarab, E.S. Zhukovskii, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Matem. Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (in Russian)

[11] A.V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[12] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis, V.V. Obukhovskii, Introduction to the theory of multi-valued mappings and differential inclusions, Librokom, M., 2011 (in Russian) | MR

[13] N. Dunford, J.T. Schwartz, Linear operators, v. I, General theory, Interscience Publ., New York, 1958 | MR | Zbl

[14] N. Azbelev, V. Maksimov, L. Rakhmatullina, Introduction to the theory of linear functional differential equations, World Federation Publishers Comp., Atlanta, 1995 | MR | MR | Zbl