On covering mappings in generalized metric spaces in studying implicit differential equations
Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54
Voir la notice de l'article provenant de la source Math-Net.Ru
Let on a set $X\neq \emptyset$ a metric $\rho :X\times X \to [0,\infty]$ be defined, while on $Y\neq\emptyset$ a distance $d :Y\times Y \to [0,\infty],$ be given, which satisfies only the identity axiom. We define the notion of covering and of Lipschitz property for the mappings $X\to Y$. We formulate conditions ensuring the existence of solutions $x\in X$ to equations of form $F(x,x)=y,$ $y \in Y,$ with a mapping $F:X\times X \to Y,$ being covering in one variable and Lipschitz in the other. These conditions are employed for studying the solvability of a functional equation with a deviation variable and of a Cauchy problem for an implicit differential equation. In order to do this, on the space $S$ of Lebesgue measurable functions
$z:[0,1]\to \mathbb{R}$ we define the distance
\begin{equation*}
d (z_1,z_2)=\mathrm{vrai}\sup_{t\in[0,1]}\theta(z_1(t),z_2(t)),\qquad z_1,z_2\in S,
\end{equation*}
where each continuous function $\theta:\mathbb{R}\times \mathbb{R} \to [0,\infty) $
satisfies $\theta(z_1,z_2)=0$ if and only if $z_1=z_2.$
Keywords:
covering mapping, metric space, functional equation with a deviating variable, ordinary differential equation
Mots-clés : existence of solution.
Mots-clés : existence of solution.
@article{UFA_2020_12_4_a3,
author = {E. S. Zhukovskiy and W. Merchela},
title = {On covering mappings in generalized metric spaces in studying implicit differential equations},
journal = {Ufa mathematical journal},
pages = {41--54},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/}
}
TY - JOUR AU - E. S. Zhukovskiy AU - W. Merchela TI - On covering mappings in generalized metric spaces in studying implicit differential equations JO - Ufa mathematical journal PY - 2020 SP - 41 EP - 54 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/ LA - en ID - UFA_2020_12_4_a3 ER -
E. S. Zhukovskiy; W. Merchela. On covering mappings in generalized metric spaces in studying implicit differential equations. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/