On covering mappings in generalized metric spaces in studying implicit differential equations
Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Let on a set $X\neq \emptyset$ a metric $\rho :X\times X \to [0,\infty]$ be defined, while on $Y\neq\emptyset$ a distance $d :Y\times Y \to [0,\infty],$ be given, which satisfies only the identity axiom. We define the notion of covering and of Lipschitz property for the mappings $X\to Y$. We formulate conditions ensuring the existence of solutions $x\in X$ to equations of form $F(x,x)=y,$ $y \in Y,$ with a mapping $F:X\times X \to Y,$ being covering in one variable and Lipschitz in the other. These conditions are employed for studying the solvability of a functional equation with a deviation variable and of a Cauchy problem for an implicit differential equation. In order to do this, on the space $S$ of Lebesgue measurable functions $z:[0,1]\to \mathbb{R}$ we define the distance \begin{equation*} d (z_1,z_2)=\mathrm{vrai}\sup_{t\in[0,1]}\theta(z_1(t),z_2(t)),\qquad z_1,z_2\in S, \end{equation*} where each continuous function $\theta:\mathbb{R}\times \mathbb{R} \to [0,\infty) $ satisfies $\theta(z_1,z_2)=0$ if and only if $z_1=z_2.$
Keywords: covering mapping, metric space, functional equation with a deviating variable, ordinary differential equation
Mots-clés : existence of solution.
@article{UFA_2020_12_4_a3,
     author = {E. S. Zhukovskiy and W. Merchela},
     title = {On covering mappings  in generalized metric spaces in  studying implicit differential equations},
     journal = {Ufa mathematical journal},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - W. Merchela
TI  - On covering mappings  in generalized metric spaces in  studying implicit differential equations
JO  - Ufa mathematical journal
PY  - 2020
SP  - 41
EP  - 54
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/
LA  - en
ID  - UFA_2020_12_4_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A W. Merchela
%T On covering mappings  in generalized metric spaces in  studying implicit differential equations
%J Ufa mathematical journal
%D 2020
%P 41-54
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/
%G en
%F UFA_2020_12_4_a3
E. S. Zhukovskiy; W. Merchela. On covering mappings  in generalized metric spaces in  studying implicit differential equations. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 41-54. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a3/