Mots-clés : pseudo-parabolic equation.
@article{UFA_2020_12_4_a10,
author = {D. Serikbaev},
title = {Inverse problem for fractional order pseudo-parabolic equation with involution},
journal = {Ufa mathematical journal},
pages = {119--135},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a10/}
}
D. Serikbaev. Inverse problem for fractional order pseudo-parabolic equation with involution. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 119-135. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a10/
[1] B. Ahmad, A. Alsaedi, M. Kirane, R. Tapdigoglu, “An inverse problem for space and time fractional evolution equations with an involution perturbation”, Quaest. Math., 40:2 (2017), 151–160 | DOI | MR | Zbl
[2] N. Al-Salti, M. Kirane, B.T. Torebek, “On a class of inverse problems for a heat equation with involution perturbation”, Hacet. J. Math. Stat., 48:3 (2019), 669–681 | MR
[3] T.B. Benjamin, J.L. Bona, J.J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Philosoph. Trans. Royal Soc. A: Mathem. Phys. Engineer. Sci., 272:1220 (1972), 47–78 | MR | Zbl
[4] G.I. Barenblatt, J. Garcia-Azorero, A. De Pablo, J.L. Vazquez, “Mathematical model of the non-equilibrium water-oil displacement in porous strata”, Appl. Anal., 65:1–2 (1997), 19–45 | DOI | MR | Zbl
[5] P.J. Chen, M.E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19:4 (1968), 614–627 | DOI | Zbl
[6] Marcel Dekker, New York, 2003 | MR | Zbl
[7] C. Fetecau, C-a. Fetecau, M. Kamran, D. Vieru, “Exact solutions for the flow of a generalized Oldroyd-B fluid induced by aconstantly accelerating plate between two side walls perpendicular to the plate”, J. Non-Newtonian Fluid Mech., 156:3 (2009), 189–201 | DOI | MR | Zbl
[8] V.E. Fedorov, R.R. Nazhimov, “Inverse problems for a class of degenerate evolution equations with Riemann-Liouville derivative”, Fract. Calc. Appl. Anal., 22:2 (2019), 271–286 | DOI | MR | Zbl
[9] A. Hazanee, D. Lesnic, M.I. Ismailov, N.B. Kerimov, “Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions”, Appl. Math. Comput., 346 (2019), 800–815 | MR | Zbl
[10] M. Kirane, N. Al-Salti, “Inverse problems for a nonlocal wave equation with an involution perturbation”, J. Nonl. Sci. Appl., 9:3 (2016), 1243–1251 | DOI | MR | Zbl
[11] N. Kinash, J. Janno, “Inverse problems for a perturbed time fractional diffusion equation with final overdetermination”, Math. Meth. Appl. Sci., 41:5 (2018), 1925–1943 | DOI | MR | Zbl
[12] I.A. Kaliev, M.M. Sabitova, “Problems of determining the temperature and density of heat sources from the initial and final temperatures”, J. Appl. Ind. Math., 4:3 (2010), 332–339 | DOI | MR
[13] M. Kirane, B. Samet, B.T. Torebek, “Determination of an unknown source term temperature distribution for the sub-diffusion equation at the initial and final data”, Electron. J. Diff. Equat., 2017:257 (2017), 1–13 | MR
[14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, North-Holland, 2006 | MR | Zbl
[15] Y. Kian, M. Yamamoto, “Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations”, Inverse Probl., 35:11 (2019), 115006 | DOI | MR | Zbl
[16] Y. Luchko, R. Gorenflo, “An operational method for solving fractional differential equations with the Caputo derivatives”, Acta Math. Vietnam., 24:2 (1999), 207–233 | MR | Zbl
[17] A.S. Lyubanova, A. Tani, “An inverse problem for pseudo-parabolic equation of filtration. The existence, uniqueness and regularity”, Appl. Anal., 90:10 (2011), 1557–1571 | DOI | MR | Zbl
[18] A.S. Lyubanova, A. Tani, “On inverse problems for pseudoparabolic and parabolic equations of filtration”, Inverse Probl. Sci. Eng., 19:7 (2011), 1023–1042 | DOI | MR | Zbl
[19] A.S. Lyubanova, A.V. Velisevich, “Inverse problems for the stationary and pseudoparabolic equations of diffusion”, Appl. Anal., 98:11 (2019), 1997–2010 | DOI | MR | Zbl
[20] J.J. Nieto, “Maximum principles for fractional differential equations derived from Mittag-Leffler functions”, Appl. Math. Lett., 23:10 (2010), 1248–1251 | DOI | MR | Zbl
[21] I. Orazov, M.A. Sadybekov, “On a class of problems of determining the temperature and density of heat sources given initial and final temperature”, Siber. Math. J., 53:1 (2012), 146–151 | DOI | MR | Zbl
[22] W. Rundell, “Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10:3 (1980), 231–242 | DOI | MR | Zbl
[23] M. Ruzhansky, N. Tokmagambetov, B. T. Torebek, “Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations”, J. Inverse Ill-posed Probl., 27:6 (2019), 891–911 | DOI | MR | Zbl
[24] W. Rundell, Z. Zhang, “Recovering an unknown source in a fractional diffusion problem”, J. Comput. Phys., 368 (2018), 299–314 | DOI | MR | Zbl
[25] T. Simon., “Comparing Frechet and positive stable laws”, Electron. J. Probab., 19:16 (2014), 1–25 | MR
[26] M. M. Slodic̆ka, K. S̆is̆kova, K. V. Bockstal, “Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation”, Appl. Math. Lett., 91 (2019), 15–21 | DOI | MR | Zbl
[27] D. Tong, Y. Liu, “Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe”, Inter. J. Engin. Sci., 43:3–4 (2005), 281–289 | DOI | MR | Zbl
[28] B.T. Torebek, R. Tapdigoglu, “Some inverse problems for the nonlocal heat equation with Caputo fractional derivative”, Math. Methods Appl. Sci., 40:18 (2017), 6468–6479 | DOI | MR | Zbl