@article{UFA_2020_12_4_a1,
author = {N. F. Valeev and Y. Sh. Ilyasov},
title = {Inverse spectral problem for {Sturm{\textendash}Liouville} operator with prescribed partial trace},
journal = {Ufa mathematical journal},
pages = {19--29},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a1/}
}
N. F. Valeev; Y. Sh. Ilyasov. Inverse spectral problem for Sturm–Liouville operator with prescribed partial trace. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 19-29. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a1/
[1] Ambarzumian V., “Über eine frage der eigenwerttheorie”, Zeitschrift für Physik A Hadrons and Nuclei, 53:9 (1929), 690–695 | Zbl
[2] P. Binding, “Left definite multiparameter eigenvalue problems”, Trans. Amer. Math. Soc., 272 (1982), 475–486 | DOI | MR | Zbl
[3] Kh. Kh. Murtazin, Z. Yu. Fazullin, “Non-nuclear perturbations of discrete operators and trace formulae”, Sb. Math., 196:12 (2005), 1841–1874 | DOI | MR | Zbl
[4] Borg G., “Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe”, Acta Mathematica, 78:1 (1946), 1–96 | DOI | MR | Zbl
[5] Chadan K., Colton D., Päivärinta L., Rundell W., An introduction to inverse scattering and inverse spectral problems, Society for Industrial and Applied Mathematics, 1997 | MR | Zbl
[6] Chu M., Golub G., Golub G. H., Inverse eigenvalue problems: theory, algorithms, and application, Oxford University Press, 2005 | MR
[7] Edmunds D. E., Evans W. D., Spectral theory and differential operators, Clarendon Press, Oxford, 1987 | MR | Zbl
[8] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976 | MR | Zbl
[9] Gladwell G. M. L., Inverse Problems in Scattering – An Introduction, Kluwer Academic Publishers, 1993 | MR | Zbl
[10] Gel'fand I. M., Levitan B. M., “On the determination of a differential equation from its spectral function”, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 15:4 (1951), 309–360 | MR | Zbl
[11] Guo H., Qi J., “Extremal norm for potentials of Sturm-Liouville eigenvalue problems with separated boundary conditions”, Electronic Journal of Differential Equations, 99 (2017), 1–11 | MR
[12] Hile G. N., Zhenyuan Xu, “Inequalities for Sums of Reciprocals of Eigenvalues”, Journal of mathematical analysis and applications, 180 (1993), 412–430 | DOI | MR | Zbl
[13] Henrot A., Extremum Problems of Eigenvalues of Elliptic Operators, Birkhauser Verlag, 2006 | MR | Zbl
[14] Fulton W., “Eigenvalues, Invariant factors, Highest weights, and Schubert calculus”, Bulletin of the American Mathematical Society, 37:3 (2000), 209–249 | DOI | MR | Zbl
[15] Ilyasov Y. Sh., Valeev N. F., “On nonlinear boundary value problem corresponding to $ N $-dimensional inverse spectral problem”, J. Diff. Eq., 266:8 (2019), 4533–4543 | DOI | MR | Zbl
[16] Il'yasov Ya., Valeev N., “On an inverse spectral problem and a generalized Sturm's nodal theorem for nonlinear boundary value problems”, Ufa Math. J., 10:4 (2018), 122–128 | DOI | MR | Zbl
[17] Möller M., Zettl A., “Differentiable dependence of eigenvalues of operators in Banach spaces”, Journal of Operator Theory, 10:4 (1996), 335–355 | MR
[18] Qi J., Chen S., “Extremal norms of the potentials recovered from inverse Dirichlet problems”, Inverse Problems, 32:3 (2016), 035007 | DOI | MR | Zbl
[19] Pöschel J., Trubowitz E., Inverse spectral theory, Pure and Applied Mathematics, 130, Academic Press, 1987 | MR | Zbl
[20] Valeev N. F., Il'yasov Y. Sh., “On an inverse optimization spectral problem and a related nonlinear boundary value problem”, Math. Zametki, 104:4 (2018), 621–625 | DOI | MR | Zbl
[21] Qiaoling Wei, Gang Menga, Meirong Zhang, “Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls”, Journal of Differential Equations, 247:2 (2009), 364–400 | DOI | MR | Zbl
[22] Zakhariev B. N., Chabanov V. M., “New situation in quantum mechanics (wonderful potentials from the inverse problem)”, Inverse Problems, 13:6 (1997), 4779 | DOI | MR
[23] A. S. Householder, The theory of matrices in numerical analysis, Dover Books on Mathematics, Dover Publications, Blaisdell, 2006 | MR
[24] K. Fan, “On a theorem of Weyl concerning eigenvalues of linear transformatioins I”, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 652–655 | DOI | MR
[25] Lusternik L., “Sur les extrémés relatifs des fonctionnelles”, Matematicheskii Sbornik, 41:3 (1934), 390–401
[26] Zettl A., Sturm-Liouville theory, American Mathematical Soc., 2005 | MR | Zbl
[27] Zhang M., “Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls”, J. Diff. Eq., 246:11 (2009), 4188–4220 | DOI | MR | Zbl
[28] B.M. Levitan, Inverse Sturm-Liouville problems, VNU Science Press, Utrecht, 1987 | MR | MR | Zbl