Inverse spectral problem for Sturm–Liouville operator with prescribed partial trace
Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is aimed at studying optimization inverse spectral problems with a so-called incomplete spectral data. As incomplete spectral data, the partial traces of the Sturm–Liouville operator serve. We study the following formulation of the inverse spectral problem with incomplete data (optimization problem): find a potential $\hat{V}$ closest to a given function $V_0$ such that a partial trace of the Sturm–Liouville operator with the potential $\hat{V}$ has a prescribed value. As a main result, we prove the existence and uniqueness theorem for solutions of this optimization inverse spectral problem. A new type of relationship between linear spectral problems and systems of nonlinear differential equations is established. This allows us to find a solution to the inverse optimal spectral problem by solving a boundary value problem for a system of nonlinear differential equations and to obtain a solvability of the system of nonlinear differential equations. To prove the uniqueness of solutions, we use the convexity property of the partial trace of the Sturm-Liouville operator with the potential $\hat{V}$; the trace is treated as a functional of the potential $\hat{V}$. We obtain a new generalization of the Lidskii-Wielandt inequality to arbitrary self-adjoint semi-bounded operators with a discrete spectrum.
Keywords: spectral theory of differential operators, inverse spectral problem, variational problems, inequalities for eigenvalues.
@article{UFA_2020_12_4_a1,
     author = {N. F. Valeev and Y. Sh. Ilyasov},
     title = {Inverse spectral problem for {Sturm{\textendash}Liouville} operator with prescribed partial trace},
     journal = {Ufa mathematical journal},
     pages = {19--29},
     year = {2020},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a1/}
}
TY  - JOUR
AU  - N. F. Valeev
AU  - Y. Sh. Ilyasov
TI  - Inverse spectral problem for Sturm–Liouville operator with prescribed partial trace
JO  - Ufa mathematical journal
PY  - 2020
SP  - 19
EP  - 29
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a1/
LA  - en
ID  - UFA_2020_12_4_a1
ER  - 
%0 Journal Article
%A N. F. Valeev
%A Y. Sh. Ilyasov
%T Inverse spectral problem for Sturm–Liouville operator with prescribed partial trace
%J Ufa mathematical journal
%D 2020
%P 19-29
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a1/
%G en
%F UFA_2020_12_4_a1
N. F. Valeev; Y. Sh. Ilyasov. Inverse spectral problem for Sturm–Liouville operator with prescribed partial trace. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 19-29. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a1/

[1] Ambarzumian V., “Über eine frage der eigenwerttheorie”, Zeitschrift für Physik A Hadrons and Nuclei, 53:9 (1929), 690–695 | Zbl

[2] P. Binding, “Left definite multiparameter eigenvalue problems”, Trans. Amer. Math. Soc., 272 (1982), 475–486 | DOI | MR | Zbl

[3] Kh. Kh. Murtazin, Z. Yu. Fazullin, “Non-nuclear perturbations of discrete operators and trace formulae”, Sb. Math., 196:12 (2005), 1841–1874 | DOI | MR | Zbl

[4] Borg G., “Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe”, Acta Mathematica, 78:1 (1946), 1–96 | DOI | MR | Zbl

[5] Chadan K., Colton D., Päivärinta L., Rundell W., An introduction to inverse scattering and inverse spectral problems, Society for Industrial and Applied Mathematics, 1997 | MR | Zbl

[6] Chu M., Golub G., Golub G. H., Inverse eigenvalue problems: theory, algorithms, and application, Oxford University Press, 2005 | MR

[7] Edmunds D. E., Evans W. D., Spectral theory and differential operators, Clarendon Press, Oxford, 1987 | MR | Zbl

[8] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976 | MR | Zbl

[9] Gladwell G. M. L., Inverse Problems in Scattering – An Introduction, Kluwer Academic Publishers, 1993 | MR | Zbl

[10] Gel'fand I. M., Levitan B. M., “On the determination of a differential equation from its spectral function”, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 15:4 (1951), 309–360 | MR | Zbl

[11] Guo H., Qi J., “Extremal norm for potentials of Sturm-Liouville eigenvalue problems with separated boundary conditions”, Electronic Journal of Differential Equations, 99 (2017), 1–11 | MR

[12] Hile G. N., Zhenyuan Xu, “Inequalities for Sums of Reciprocals of Eigenvalues”, Journal of mathematical analysis and applications, 180 (1993), 412–430 | DOI | MR | Zbl

[13] Henrot A., Extremum Problems of Eigenvalues of Elliptic Operators, Birkhauser Verlag, 2006 | MR | Zbl

[14] Fulton W., “Eigenvalues, Invariant factors, Highest weights, and Schubert calculus”, Bulletin of the American Mathematical Society, 37:3 (2000), 209–249 | DOI | MR | Zbl

[15] Ilyasov Y. Sh., Valeev N. F., “On nonlinear boundary value problem corresponding to $ N $-dimensional inverse spectral problem”, J. Diff. Eq., 266:8 (2019), 4533–4543 | DOI | MR | Zbl

[16] Il'yasov Ya., Valeev N., “On an inverse spectral problem and a generalized Sturm's nodal theorem for nonlinear boundary value problems”, Ufa Math. J., 10:4 (2018), 122–128 | DOI | MR | Zbl

[17] Möller M., Zettl A., “Differentiable dependence of eigenvalues of operators in Banach spaces”, Journal of Operator Theory, 10:4 (1996), 335–355 | MR

[18] Qi J., Chen S., “Extremal norms of the potentials recovered from inverse Dirichlet problems”, Inverse Problems, 32:3 (2016), 035007 | DOI | MR | Zbl

[19] Pöschel J., Trubowitz E., Inverse spectral theory, Pure and Applied Mathematics, 130, Academic Press, 1987 | MR | Zbl

[20] Valeev N. F., Il'yasov Y. Sh., “On an inverse optimization spectral problem and a related nonlinear boundary value problem”, Math. Zametki, 104:4 (2018), 621–625 | DOI | MR | Zbl

[21] Qiaoling Wei, Gang Menga, Meirong Zhang, “Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls”, Journal of Differential Equations, 247:2 (2009), 364–400 | DOI | MR | Zbl

[22] Zakhariev B. N., Chabanov V. M., “New situation in quantum mechanics (wonderful potentials from the inverse problem)”, Inverse Problems, 13:6 (1997), 4779 | DOI | MR

[23] A. S. Householder, The theory of matrices in numerical analysis, Dover Books on Mathematics, Dover Publications, Blaisdell, 2006 | MR

[24] K. Fan, “On a theorem of Weyl concerning eigenvalues of linear transformatioins I”, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 652–655 | DOI | MR

[25] Lusternik L., “Sur les extrémés relatifs des fonctionnelles”, Matematicheskii Sbornik, 41:3 (1934), 390–401

[26] Zettl A., Sturm-Liouville theory, American Mathematical Soc., 2005 | MR | Zbl

[27] Zhang M., “Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls”, J. Diff. Eq., 246:11 (2009), 4188–4220 | DOI | MR | Zbl

[28] B.M. Levitan, Inverse Sturm-Liouville problems, VNU Science Press, Utrecht, 1987 | MR | MR | Zbl