Mots-clés : distant perturbations
@article{UFA_2020_12_4_a0,
author = {D. I. Borisov and M. N. Konyrkulzhaeva},
title = {On infinite system of resonance and eigenvalues with exponential asymptotics generated by distant perturbations},
journal = {Ufa mathematical journal},
pages = {3--18},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a0/}
}
TY - JOUR AU - D. I. Borisov AU - M. N. Konyrkulzhaeva TI - On infinite system of resonance and eigenvalues with exponential asymptotics generated by distant perturbations JO - Ufa mathematical journal PY - 2020 SP - 3 EP - 18 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a0/ LA - en ID - UFA_2020_12_4_a0 ER -
%0 Journal Article %A D. I. Borisov %A M. N. Konyrkulzhaeva %T On infinite system of resonance and eigenvalues with exponential asymptotics generated by distant perturbations %J Ufa mathematical journal %D 2020 %P 3-18 %V 12 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a0/ %G en %F UFA_2020_12_4_a0
D. I. Borisov; M. N. Konyrkulzhaeva. On infinite system of resonance and eigenvalues with exponential asymptotics generated by distant perturbations. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a0/
[1] D. Borisov, A. Golovina, “On emergence of resonances from multiple eigenvalues of the Schrödinger operator in a cylinder with distant perturbations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 163, 2019, 3–14 (in Russian)
[2] D.I. Borisov, A.M. Golovina, “On the resolvents of periodic operators with distant perturbaions”, Ufa Math. J., 4:2 (2012), 65–73 | MR
[3] A.M. Golovina, “Spectrum of periodic elliptic operators with distant perturbations in space”, St. Petersburg Math. J., 25:5 (2014), 735–754 | DOI | MR | Zbl
[4] A.I. Markushevich, The theory of analytic functions, v. 2, Nauka, M., 1967 (in Russian) | MR
[5] T. Aktosun, M. Klaus, Cornelis van der Mee, “On the number of bound states for the one-dimensional Schrödinger equation”, J. Math. Phys, 39:9 (1998), 4249–4259 | DOI | MR
[6] F. Barra, P. Gaspard, “Scattering in periodic systems: from resonances to band structure”, J. Phys. A: Math. Gen, 32:18 (1999), 3357–3375 | DOI | MR | Zbl
[7] D. Borisov, P. Exner, “Exponential splitting of bound states in a waveguide with a pair of distant windows”, J. Phys. A: Math. Gen., 37:10 (2004), 3411–3428 | DOI | MR | Zbl
[8] D. Borisov, P. Exner, “Distant perturbation asymptotics in window-coupled waveguides. I. The non-threshold case”, J. Math. Phys., 47:11 (2006), 113502 | DOI | MR | Zbl
[9] D. Borisov, P. Exner, A. Golovina, “Tunneling resonances in systems without a classical trapping”, J. Math. Phys., 54:1 (2013), 012102 | DOI | MR | Zbl
[10] D.I. Borisov, “Distant perturbations of the Laplacian in a multi-dimensional space”, Ann. H. Poincaré, 8:7 (2007), 1371–1399 | DOI | MR | Zbl
[11] D. Borisov, “Asymptotic behaviour of the spectrum of a waveguide with distant perturbation”, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl
[12] D.I. Borisov, D.A. Zezyulin, “Spacing gain and absorption in a simple $\mathcal{PT}$-symmetric model: spectral singularities and ladders of eigenvalues and resonances”, J. Phys. A. Math. Theor., 52:44 (2019), 445202 | DOI | MR
[13] D.I. Borisov, D.A. Zezyulin, “Sequences of closely spaced resonances and eigenvalues for bipartite complex potentials”, Appl. Math. Lett., 100 (2020), 106049 | DOI | MR | Zbl
[14] D.I. Borisov, A.M. Golovina, “On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders”, J. Math. Anal. Appl., 2021 (to appear) | MR
[15] E.B. Davies, “The twisting trick for double well Hamiltonians”, Comm. Math. Phys., 85:3 (1982), 471–479 | DOI | MR | Zbl
[16] V. Graffi, E.M. Harrell II, H. J. Silverstone, “The $\frac{1}{R}$ expansion for $H_2^+$: analyticity, summability and asymptotics”, Ann. Phys., 165:2 (1985), 441–483 | DOI | MR | Zbl
[17] A.M. Golovina, “On the resolvent of elliptic operators with distant perturbations in the space”, Russ. J. Math. Phys., 19:2 (2012), 182–192 | DOI | MR | Zbl
[18] A.M. Golovina, “Discrete eigenvalues of periodic operators with distant perturbations”, J. Math. Sci., 189:3 (2013), 342–364 | DOI | MR | Zbl
[19] E.M. Harrell, “Double wells”, Comm. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl
[20] E.M. Harrell, M. Klaus, “On the double-well problem for Dirac operators”, Ann. de l'Inst. H. Poincaré, 38:2 (1983), 153–166 | MR | Zbl
[21] R. Høegh-Krohn, M. Mebkhout, “The $\frac{1}{r}$ expansion for the critical multiple well problem”, Comm. Math. Phys., 91:1 (1983), 65–73 | DOI | MR
[22] M. Klaus, “Some remarks on double-wells in one and three dimensions”, Ann. de l'Inst. H. Poincaré, 34:4 (1981), 405–417 | MR | Zbl
[23] M. Klaus, B. Simon, “Binding of Schrödinger particles through conspiracy of potential wells”, Ann. de l'Inst. H. Poincaré, sect. A, 30:2 (1979), 83–87 | MR
[24] F. Klopp, “Resonances for large one-dimensional “ergodic” systems”, Anal. PDE, 9:2 (2016), 259–352 | DOI | MR | Zbl
[25] M. Zworski, S. Dyatlov, Mathematical theory of scattering resonances, Amer. Math. Soc., Providence, RI, 2019 | MR | Zbl