Exponential Rosenthal and Marcinkiewicz–Zygmund inequalities
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 97-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities to some exponential Orlicz spaces.The Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities are fundamental estimates on the moment of random variables on Lebesgue spaces. The proofs of the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on the exponential Orlicz spaces rely on two results from theory of function spaces and probability theory. The first one is an extrapolation property of the exponential Orlicz spaces. This property guarantees that the norms of some exponential Orlicz spaces can be obtained by taking the supremum over the weighted norms of Lebesgue spaces. The second one is the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on Lebesgue spaces. Our results are applications of the extrapolation property of the exponential Orlicz spaces and the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on Lebesgue spaces. In addition, the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on Lebesgue spaces provide not only some sharpened inequalities in probability, but also yield some substantial contributions on extending those probability inequalities to the exponential Orlicz spaces.
Keywords: Rosenthal inequality, Marcinkiewicz–Zygmund inequalities, exponential spaces, Orlicz spaces.
Mots-clés : martingale
@article{UFA_2020_12_3_a9,
     author = {Kwok-Pun Ho},
     title = {Exponential {Rosenthal} and {Marcinkiewicz{\textendash}Zygmund} inequalities},
     journal = {Ufa mathematical journal},
     pages = {97--106},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a9/}
}
TY  - JOUR
AU  - Kwok-Pun Ho
TI  - Exponential Rosenthal and Marcinkiewicz–Zygmund inequalities
JO  - Ufa mathematical journal
PY  - 2020
SP  - 97
EP  - 106
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a9/
LA  - en
ID  - UFA_2020_12_3_a9
ER  - 
%0 Journal Article
%A Kwok-Pun Ho
%T Exponential Rosenthal and Marcinkiewicz–Zygmund inequalities
%J Ufa mathematical journal
%D 2020
%P 97-106
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a9/
%G en
%F UFA_2020_12_3_a9
Kwok-Pun Ho. Exponential Rosenthal and Marcinkiewicz–Zygmund inequalities. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 97-106. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a9/

[1] S. Astashkin, F. Sukochev, “Best constants in Rosenthal-type inequalities and the Kruglov operator”, Ann. Probab., 38:5 (2010), 1986–2008 | DOI | MR | Zbl

[2] S. Astashkin, F. Sukochev, “Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property”, Israel J. Math., 184 (2011), 455–476 | DOI | MR | Zbl

[3] M. Braverman, “Exponential Orlicz spaces and indepedent random variables”, Prob. Math. Stat., 12:2 (1991), 245–251 | MR

[4] M. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[5] D. Burkholder, “Sharp inequalities for martingale and stochastic integral”, Asterisque, 157–158, 1988, 75–94 | MR | Zbl

[6] S. Dharmadhikari, V. Fabian, K. Jogdeo, “Bounds on the moments of martingales”, Ann. Math. Stat., 39:5 (1968), 1719–1723 | DOI | MR | Zbl

[7] D. E. Edmunds, P. Gurka, B. Opic, “Norms of embeddings of logarithmic Bessel potential spaces”, Proc. Amer. Math. Soc., 126:8 (1998), 2417–2425 | DOI | MR | Zbl

[8] D. E. Edmunds, W. D. Evans, Hardy Operators, function spaces, embeddings, Springer, Berlin, 2004 | MR | Zbl

[9] J. Garnett, Bounded analytic functions, Academic Press, New York, 2006 | MR

[10] M. Fan, “Some inequalities for $p$-variations of martinagle”, Stochastic Process. Appl., 109:2 (2004), 189–201 | DOI | MR | Zbl

[11] P. Hitczenko, “Best constants in martingale version of Rosenthal's inequality”, Ann. Probab., 18:4 (1990), 1656–1668 | DOI | MR | Zbl

[12] P. Hitczenko, “On the behavior of the constant in a decoupling inequality for martingales”, Proc. Amer. Math. Soc., 121:1 (1994), 253–258 | DOI | MR | Zbl

[13] Kwok-Pun Ho, “Exponential probabilistic inequalities”, Lith. Math. J., 58 (2018), 399–407 | DOI | MR | Zbl

[14] Kwok-Pun Ho, “Exponential integrability of martingales”, Quaest. Math., 42:2 (2019), 201–206 | DOI | MR | Zbl

[15] J. Hoffmann-Jørgensen, “Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 159–186 | DOI | MR | Zbl

[16] W. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234–253 | DOI | MR | Zbl

[17] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991 | MR | Zbl

[18] I. Pinelis, “On the distribution of sums of independent random variables with values in a Banach space”, Theory Probab. Appl., 23:3 (1978), 608–615 | DOI | MR

[19] I. Pinelis, “Optimum bounds for the distributions of martingales in Banach spaces”, Ann. Probab., 22:4 (1994), 1679–1706 | DOI | MR | Zbl

[20] Y. Ren, H. Liang, “On the best constant in Marcinkiewicz-Zygmund inequality”, Stat. Probab. Lett., 53:3 (2001), 227–233 | DOI | MR | Zbl

[21] H. P. Rosenthal, “On subspaces of $L_p$ ($p>2$) spanned sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl

[22] M. Talagrand, “Isoperimetry and integrability of the sum of independent Banach-space valued random variables”, Ann. Probab., 17:4 (1989), 1546–1570 | DOI | MR | Zbl

[23] H. Triebel, “Approximation numbers and entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces”, Proc. London Math. Soc., 66:3 (1993), 589–618 | DOI | MR | Zbl

[24] G. Wang, “Sharp inequalities for the conditional square function of a martingale”, Ann. Probab., 19 (1991), 1679–1688 | DOI | MR | Zbl