Mots-clés : martingale
@article{UFA_2020_12_3_a9,
author = {Kwok-Pun Ho},
title = {Exponential {Rosenthal} and {Marcinkiewicz{\textendash}Zygmund} inequalities},
journal = {Ufa mathematical journal},
pages = {97--106},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a9/}
}
Kwok-Pun Ho. Exponential Rosenthal and Marcinkiewicz–Zygmund inequalities. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 97-106. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a9/
[1] S. Astashkin, F. Sukochev, “Best constants in Rosenthal-type inequalities and the Kruglov operator”, Ann. Probab., 38:5 (2010), 1986–2008 | DOI | MR | Zbl
[2] S. Astashkin, F. Sukochev, “Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property”, Israel J. Math., 184 (2011), 455–476 | DOI | MR | Zbl
[3] M. Braverman, “Exponential Orlicz spaces and indepedent random variables”, Prob. Math. Stat., 12:2 (1991), 245–251 | MR
[4] M. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[5] D. Burkholder, “Sharp inequalities for martingale and stochastic integral”, Asterisque, 157–158, 1988, 75–94 | MR | Zbl
[6] S. Dharmadhikari, V. Fabian, K. Jogdeo, “Bounds on the moments of martingales”, Ann. Math. Stat., 39:5 (1968), 1719–1723 | DOI | MR | Zbl
[7] D. E. Edmunds, P. Gurka, B. Opic, “Norms of embeddings of logarithmic Bessel potential spaces”, Proc. Amer. Math. Soc., 126:8 (1998), 2417–2425 | DOI | MR | Zbl
[8] D. E. Edmunds, W. D. Evans, Hardy Operators, function spaces, embeddings, Springer, Berlin, 2004 | MR | Zbl
[9] J. Garnett, Bounded analytic functions, Academic Press, New York, 2006 | MR
[10] M. Fan, “Some inequalities for $p$-variations of martinagle”, Stochastic Process. Appl., 109:2 (2004), 189–201 | DOI | MR | Zbl
[11] P. Hitczenko, “Best constants in martingale version of Rosenthal's inequality”, Ann. Probab., 18:4 (1990), 1656–1668 | DOI | MR | Zbl
[12] P. Hitczenko, “On the behavior of the constant in a decoupling inequality for martingales”, Proc. Amer. Math. Soc., 121:1 (1994), 253–258 | DOI | MR | Zbl
[13] Kwok-Pun Ho, “Exponential probabilistic inequalities”, Lith. Math. J., 58 (2018), 399–407 | DOI | MR | Zbl
[14] Kwok-Pun Ho, “Exponential integrability of martingales”, Quaest. Math., 42:2 (2019), 201–206 | DOI | MR | Zbl
[15] J. Hoffmann-Jørgensen, “Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 159–186 | DOI | MR | Zbl
[16] W. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234–253 | DOI | MR | Zbl
[17] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991 | MR | Zbl
[18] I. Pinelis, “On the distribution of sums of independent random variables with values in a Banach space”, Theory Probab. Appl., 23:3 (1978), 608–615 | DOI | MR
[19] I. Pinelis, “Optimum bounds for the distributions of martingales in Banach spaces”, Ann. Probab., 22:4 (1994), 1679–1706 | DOI | MR | Zbl
[20] Y. Ren, H. Liang, “On the best constant in Marcinkiewicz-Zygmund inequality”, Stat. Probab. Lett., 53:3 (2001), 227–233 | DOI | MR | Zbl
[21] H. P. Rosenthal, “On subspaces of $L_p$ ($p>2$) spanned sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl
[22] M. Talagrand, “Isoperimetry and integrability of the sum of independent Banach-space valued random variables”, Ann. Probab., 17:4 (1989), 1546–1570 | DOI | MR | Zbl
[23] H. Triebel, “Approximation numbers and entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces”, Proc. London Math. Soc., 66:3 (1993), 589–618 | DOI | MR | Zbl
[24] G. Wang, “Sharp inequalities for the conditional square function of a martingale”, Ann. Probab., 19 (1991), 1679–1688 | DOI | MR | Zbl