@article{UFA_2020_12_3_a7,
author = {G. G. Petrosyan},
title = {On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in {Banach} space},
journal = {Ufa mathematical journal},
pages = {69--80},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/}
}
TY - JOUR AU - G. G. Petrosyan TI - On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space JO - Ufa mathematical journal PY - 2020 SP - 69 EP - 80 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/ LA - en ID - UFA_2020_12_3_a7 ER -
%0 Journal Article %A G. G. Petrosyan %T On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space %J Ufa mathematical journal %D 2020 %P 69-80 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/ %G en %F UFA_2020_12_3_a7
G. G. Petrosyan. On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 69-80. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/
[1] M. S. Afanasova, G. G. Petrosyan, “On the boundary value problem for functional-differential inclusion of fractional order with general initial condition in a Banach space”, Russian Math. (Izv. VUZov), 63:9 (2019), 1–12 | DOI | MR | Zbl
[2] G. G. Petrosyan, M. S. Afanasova, “On the Cauchy problem for fractional differential inclusion with a nonlinear boundary condition”, Vestnik Voronezh. Gosud. Univ. Ser. Fiz. Matem., 1 (2017), 135–151 (in Russian) | Zbl
[3] M. Afanasova, Y. Ch. Liou, V. Obukhoskii, G. Petrosyan, “On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, Journal of Nonlinear and Convex Analysis, 20:9 (2019), 1919–1935 | MR
[4] J. Appell, B. Lopez, K. Sadarangani, “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, J. Nonlinear Var. Anal., 2 (2018), 25–33 | DOI | Zbl
[5] I. Benedetti, V. Obukhovskii, V. Taddei, “On generalized boundary value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal., 20 (2017), 1424–1446 | DOI | MR | Zbl
[6] K. J. Engel, R. Nagel, A Short Course on Operator Semigroups, Universitext, Springer, New York, 2006 | MR | Zbl
[7] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin–Heidelberg, 2014 | MR | Zbl
[8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl
[9] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New-York, 2001 | MR
[10] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR | Zbl
[11] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 97:4 (2018), 571–591 | DOI | MR
[12] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory Appl., 28:4 (2017), 1–28 | MR
[13] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Existence and Approximation of Solutions to Nonlocal Boundary Value Problems for Fractional Differential Inclusions”, Fixed Point Theory and Applications, 2 (2019) | MR | Zbl
[14] T. D. Ke, N. V. Loi, V. Obukhovskii, “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 18 (2015), 531–553 | MR | Zbl
[15] T. D. Ke, V. Obukhovskii, N. C. Wong, J. C. Yao, “On a class of fractional order differential inclusions with infinite delays”, Applicable Anal., 92 (2013), 115–137 | DOI | MR | Zbl
[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006 | MR | Zbl
[17] F. Mainardi, S. Rionero, T. Ruggeri, “On the initial value problem for the fractional diffusionwave equation”, Waves and Stability in Continuous Media, Proceedings VII WASCOM (Bologna, 1993), World Scientific, Singapore, 1994, 246–251 | MR
[18] V. Obukhovskii, B. Gelman, Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020 | Zbl
[19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl
[20] V. E. Tarasov, Fractional Dynamics, Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, London–New York, 2010 | MR | Zbl
[21] Z. Zhang, B. Liu, “Existence of mild solutions for fractional evolution equations”, Fixed Point Theory, 15:1 (2014), 325–334 | MR | Zbl
[22] Y. Zhou, F. Jiao, “Existence of mild solutions for fractional neutral evolution equations”, Comput. Math. Appl., 59:3 (2010), 1063–1077 | DOI | MR | Zbl
[23] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier Academic Press, London, 2016 | MR | Zbl