On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 69-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a boundary value problem for a semi-linear differential inclusion of Caputo fractional derivative and a deviating coefficient in a Banach space. We assume that the linear part of the inclusion generates a bounded $C_0$-semigroup. A nonlinear part of the inclusion is a multi-valued mapping depending on the time and the prehistory of the function before a current time. The boundary condition is functional and anti-periodic in the sense that one function is equals to another with an opposite sign. To solve the considered problem, we employ the theory of fractional mathematical analysis, the properties of Mittag-Leffler as well as the theory of topological power for multi-valued condensing maps. The idea is as follws: the original problem is reduced to the existence of fixed points of a corresponding resolving multi-valued integral operator in the space of continuous functions. To prove the existence of the fixed points of the resolving multi-operator we employ a generalized theorem of Sadovskii type on a fixed point. This is why we show that the resolving integral multi-operator is condensing with respect to a vector measure of non-compactness in the space of continuous functions and maps a closed ball in this space into itself.
Keywords: Caputo fractional derivative, semi-linear differential inclusion, boundary value problem, fixed point, condensing multi-mapping, measure of non-compactness.
@article{UFA_2020_12_3_a7,
     author = {G. G. Petrosyan},
     title = {On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in {Banach} space},
     journal = {Ufa mathematical journal},
     pages = {69--80},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/}
}
TY  - JOUR
AU  - G. G. Petrosyan
TI  - On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space
JO  - Ufa mathematical journal
PY  - 2020
SP  - 69
EP  - 80
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/
LA  - en
ID  - UFA_2020_12_3_a7
ER  - 
%0 Journal Article
%A G. G. Petrosyan
%T On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space
%J Ufa mathematical journal
%D 2020
%P 69-80
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/
%G en
%F UFA_2020_12_3_a7
G. G. Petrosyan. On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 69-80. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a7/

[1] M. S. Afanasova, G. G. Petrosyan, “On the boundary value problem for functional-differential inclusion of fractional order with general initial condition in a Banach space”, Russian Math. (Izv. VUZov), 63:9 (2019), 1–12 | DOI | MR | Zbl

[2] G. G. Petrosyan, M. S. Afanasova, “On the Cauchy problem for fractional differential inclusion with a nonlinear boundary condition”, Vestnik Voronezh. Gosud. Univ. Ser. Fiz. Matem., 1 (2017), 135–151 (in Russian) | Zbl

[3] M. Afanasova, Y. Ch. Liou, V. Obukhoskii, G. Petrosyan, “On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, Journal of Nonlinear and Convex Analysis, 20:9 (2019), 1919–1935 | MR

[4] J. Appell, B. Lopez, K. Sadarangani, “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, J. Nonlinear Var. Anal., 2 (2018), 25–33 | DOI | Zbl

[5] I. Benedetti, V. Obukhovskii, V. Taddei, “On generalized boundary value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal., 20 (2017), 1424–1446 | DOI | MR | Zbl

[6] K. J. Engel, R. Nagel, A Short Course on Operator Semigroups, Universitext, Springer, New York, 2006 | MR | Zbl

[7] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin–Heidelberg, 2014 | MR | Zbl

[8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[9] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New-York, 2001 | MR

[10] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR | Zbl

[11] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 97:4 (2018), 571–591 | DOI | MR

[12] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory Appl., 28:4 (2017), 1–28 | MR

[13] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Existence and Approximation of Solutions to Nonlocal Boundary Value Problems for Fractional Differential Inclusions”, Fixed Point Theory and Applications, 2 (2019) | MR | Zbl

[14] T. D. Ke, N. V. Loi, V. Obukhovskii, “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 18 (2015), 531–553 | MR | Zbl

[15] T. D. Ke, V. Obukhovskii, N. C. Wong, J. C. Yao, “On a class of fractional order differential inclusions with infinite delays”, Applicable Anal., 92 (2013), 115–137 | DOI | MR | Zbl

[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006 | MR | Zbl

[17] F. Mainardi, S. Rionero, T. Ruggeri, “On the initial value problem for the fractional diffusionwave equation”, Waves and Stability in Continuous Media, Proceedings VII WASCOM (Bologna, 1993), World Scientific, Singapore, 1994, 246–251 | MR

[18] V. Obukhovskii, B. Gelman, Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020 | Zbl

[19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl

[20] V. E. Tarasov, Fractional Dynamics, Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, London–New York, 2010 | MR | Zbl

[21] Z. Zhang, B. Liu, “Existence of mild solutions for fractional evolution equations”, Fixed Point Theory, 15:1 (2014), 325–334 | MR | Zbl

[22] Y. Zhou, F. Jiao, “Existence of mild solutions for fractional neutral evolution equations”, Comput. Math. Appl., 59:3 (2010), 1063–1077 | DOI | MR | Zbl

[23] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier Academic Press, London, 2016 | MR | Zbl