On solvability of class of nonlinear equations with small parameter in Banach space
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 60-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of one class of nonlinear equations with a small parameter in a Banach space. The main difficulty is that the principal linear part of this equation is non-invertible. To study the solvability of the considered class of equations we apply a new method combining the Pontryagin method from the theory of autonomous systems on the plane and the methods of calculating the rotations of vector fields. We also employ a scheme for matrix representations of split operators known in the bifurcation theory of solutions to nonlinear equations. In contrast to the Pontryagin method, we do not assume a differentiability for a nonlinear mapping and apply methods for calculating the rotations of vector fields. On the base of the proposed method we formulate and prove a theorem on solvability conditions for the considered class of nonlinear equations. As an application, we study two periodic problems for nonlinear differential equations with a small parameter, namely, a periodic problem for the system of ordinary differential equations in a resonance case and a periodic problem for a nonlinear elliptic equations with a non-invertible linear part.
Keywords: nonlinear equation with small parameter, Pontryagin method, rotation of vector field, periodic problem.
@article{UFA_2020_12_3_a6,
     author = {E. M. Mukhamadiev and A. B. Nazimov and A. N. Naimov},
     title = {On   solvability  of class of nonlinear equations  with   small parameter in {Banach} space},
     journal = {Ufa mathematical journal},
     pages = {60--68},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a6/}
}
TY  - JOUR
AU  - E. M. Mukhamadiev
AU  - A. B. Nazimov
AU  - A. N. Naimov
TI  - On   solvability  of class of nonlinear equations  with   small parameter in Banach space
JO  - Ufa mathematical journal
PY  - 2020
SP  - 60
EP  - 68
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a6/
LA  - en
ID  - UFA_2020_12_3_a6
ER  - 
%0 Journal Article
%A E. M. Mukhamadiev
%A A. B. Nazimov
%A A. N. Naimov
%T On   solvability  of class of nonlinear equations  with   small parameter in Banach space
%J Ufa mathematical journal
%D 2020
%P 60-68
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a6/
%G en
%F UFA_2020_12_3_a6
E. M. Mukhamadiev; A. B. Nazimov; A. N. Naimov. On   solvability  of class of nonlinear equations  with   small parameter in Banach space. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 60-68. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a6/