On approach for studying stochastic Leontief type equations with impulse actions
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 50-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a system of Itô stochastic differential equations having a degenerating constant linear operator in the left hand side. The right hand side of the system contains a constant linear operator and a deterministic term depending on the time only as well as impulse actions. We assume that the diffusion coefficient of this system is described by a square matrix depending on time only. These systems of equations arise in many applications. The system we study can be reduced to a canonical form by applying a transformation of a regular matrix pencil to a generalized real Schur form. The study of the obtained canonical equations requires considering the derivatives of rather higher orders for free terms including the Wiener process. Because of this, in order to differentiate the Wiener process, we apply the Nelson mean derivatives for random processes and this allows us to avoid using the theory of generalized functions. As a result we obtain analytic formulae for solutions of equations in terms of mean derivatives for random processes.
Keywords: mean derivative, current velocity, Wiener process, stochastic equations of Leontief type.
@article{UFA_2020_12_3_a5,
     author = {E. Yu. Mashkov},
     title = {On approach for studying stochastic {Leontief} type equations with impulse actions},
     journal = {Ufa mathematical journal},
     pages = {50--59},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a5/}
}
TY  - JOUR
AU  - E. Yu. Mashkov
TI  - On approach for studying stochastic Leontief type equations with impulse actions
JO  - Ufa mathematical journal
PY  - 2020
SP  - 50
EP  - 59
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a5/
LA  - en
ID  - UFA_2020_12_3_a5
ER  - 
%0 Journal Article
%A E. Yu. Mashkov
%T On approach for studying stochastic Leontief type equations with impulse actions
%J Ufa mathematical journal
%D 2020
%P 50-59
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a5/
%G en
%F UFA_2020_12_3_a5
E. Yu. Mashkov. On approach for studying stochastic Leontief type equations with impulse actions. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 50-59. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a5/

[1] L. A. Vlasenko, Yu. G. Lysenko, A. G. Rutkas, “About one stochastic model of enterprise corporations dynamics”, Economic Cybernetics, 1-3:67–69 (2011), 4–9 (in Russian)

[2] L. A. Vlasenko, S. L. Lyshko, A. G. Rutkas, “On a stochastic impulsive sustem”, Reports of the National Academy of Sciences of Ukraine, 2 (2012), 50–55 (in Russian) | MR | Zbl

[3] O. Schein, G. Denk, “Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits”, Journal of Computational and Applied Mathematics, 100:1 (1998), 77–92 | DOI | MR | Zbl

[4] T. Sickenberger, R. Winkler, “Stochastic oscillations in circuit simulation”, PAMM - Proc. Appl. Math. Mech., 7:1 (2007), 4050023–4050024 | DOI | MR

[5] R. Winkler, “Stochastic DAEs in Transient Noise Simulation”, Proceedings of Scientific Computing in Electrical Engineering (June, 23rd–28th, 2002, Eindhoven), Springer Series Mathematics in Industry, 4, 2004, 408–415 | DOI | Zbl

[6] A. L. Shestakov, G. A. Sviridyuk, “On the measurement of the «white noise»”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 99–108 (in Russian) | Zbl

[7] A. A. Belov, A. P. Kurdyukov, Descriptor systems, control problems, Fizmatlit, M., 2015 (in Russian)

[8] E. Yu. Mashkov, “Stochastic Leontief type equations with impulse actions”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 11:2 (2018), 58–72 (in Russian) | Zbl

[9] J. Demmel, Applied numerical linear algebra, SIAM, Philadelphia, 1997 | MR | Zbl

[10] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011 | MR | Zbl

[11] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013), 25–39 | MR | Zbl

[12] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Reviews, 150:4 (1996), 1079–1085 | DOI

[13] E. Nelson, Dynamical theory of Brownian motion, Princeton University Press, Princeton, 1967 | MR

[14] E. Nelson, Quantum fluctuations, Princeton University Press, Princeton, 1985 | MR | Zbl

[15] K. R. Parthasaraty, Introduction to probability and measure, Macmillan India Ltd., New Delhi, 1977 | MR

[16] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equation with non-constant coefficients”, Applicable Analysis, 94:8 (2015), 1614–1623 | DOI | MR | Zbl

[17] I. I. Gihman, A. V. Scorohod, Theory of stochastic processes, v. 3, Springer-Verlag, New York (NY), 1979 | MR | Zbl