@article{UFA_2020_12_3_a5,
author = {E. Yu. Mashkov},
title = {On approach for studying stochastic {Leontief} type equations with impulse actions},
journal = {Ufa mathematical journal},
pages = {50--59},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a5/}
}
E. Yu. Mashkov. On approach for studying stochastic Leontief type equations with impulse actions. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 50-59. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a5/
[1] L. A. Vlasenko, Yu. G. Lysenko, A. G. Rutkas, “About one stochastic model of enterprise corporations dynamics”, Economic Cybernetics, 1-3:67–69 (2011), 4–9 (in Russian)
[2] L. A. Vlasenko, S. L. Lyshko, A. G. Rutkas, “On a stochastic impulsive sustem”, Reports of the National Academy of Sciences of Ukraine, 2 (2012), 50–55 (in Russian) | MR | Zbl
[3] O. Schein, G. Denk, “Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits”, Journal of Computational and Applied Mathematics, 100:1 (1998), 77–92 | DOI | MR | Zbl
[4] T. Sickenberger, R. Winkler, “Stochastic oscillations in circuit simulation”, PAMM - Proc. Appl. Math. Mech., 7:1 (2007), 4050023–4050024 | DOI | MR
[5] R. Winkler, “Stochastic DAEs in Transient Noise Simulation”, Proceedings of Scientific Computing in Electrical Engineering (June, 23rd–28th, 2002, Eindhoven), Springer Series Mathematics in Industry, 4, 2004, 408–415 | DOI | Zbl
[6] A. L. Shestakov, G. A. Sviridyuk, “On the measurement of the «white noise»”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 99–108 (in Russian) | Zbl
[7] A. A. Belov, A. P. Kurdyukov, Descriptor systems, control problems, Fizmatlit, M., 2015 (in Russian)
[8] E. Yu. Mashkov, “Stochastic Leontief type equations with impulse actions”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 11:2 (2018), 58–72 (in Russian) | Zbl
[9] J. Demmel, Applied numerical linear algebra, SIAM, Philadelphia, 1997 | MR | Zbl
[10] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011 | MR | Zbl
[11] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013), 25–39 | MR | Zbl
[12] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Reviews, 150:4 (1996), 1079–1085 | DOI
[13] E. Nelson, Dynamical theory of Brownian motion, Princeton University Press, Princeton, 1967 | MR
[14] E. Nelson, Quantum fluctuations, Princeton University Press, Princeton, 1985 | MR | Zbl
[15] K. R. Parthasaraty, Introduction to probability and measure, Macmillan India Ltd., New Delhi, 1977 | MR
[16] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equation with non-constant coefficients”, Applicable Analysis, 94:8 (2015), 1614–1623 | DOI | MR | Zbl
[17] I. I. Gihman, A. V. Scorohod, Theory of stochastic processes, v. 3, Springer-Verlag, New York (NY), 1979 | MR | Zbl