On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 44-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem on holomorphic continuation of functions defined on the boundary of a domain into this domain is topical in the multi-dimensional complex analysis. It has a long history beginning from works by Poincaré and Hartogs. In the present work we consider continuous functions defined on a boundary of a bounded domain $D$ in $\mathbb{C}^n$, $n>1$, and possessing a generalized Morera property along the family of complex straight lines intersecting the germ of a real analytic manifold of codimension $2$ lying away of the boundary of the domain. The Morera property is the vanishing of the integral of this function over the intersection of the boundary of the domain with the complex curve. We show that such function possesses a holomorphic continuation into the domain $D$. For functions of one complex variable, the Morera property obviously does not imply the existence of holomorphic continuation. This is why such problem can be considered only in the multi-dimensional case $(n>1)$.
Keywords: holomorphic continuation, Morera boundary condition, Bochner–Martinelli kernel.
@article{UFA_2020_12_3_a4,
     author = {A. M. Kytmanov and S. G. Myslivets},
     title = {On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain},
     journal = {Ufa mathematical journal},
     pages = {44--49},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - S. G. Myslivets
TI  - On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain
JO  - Ufa mathematical journal
PY  - 2020
SP  - 44
EP  - 49
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/
LA  - en
ID  - UFA_2020_12_3_a4
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A S. G. Myslivets
%T On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain
%J Ufa mathematical journal
%D 2020
%P 44-49
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/
%G en
%F UFA_2020_12_3_a4
A. M. Kytmanov; S. G. Myslivets. On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 44-49. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/

[1] E. A. Grinberg, “A boundary analogue of Morera's theorem in the unit ball of $\mathbb{C}^n$”, Proc. Amer. Soc., 102:1 (1988), 114–116 | MR | Zbl

[2] M. L. Agranovskii, R. E. Valskii, “Maximality of invariant algebras of functions”, Siberian Math. J., 12:1 (1971), 1–7 | DOI | MR | MR

[3] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl

[4] J. Globevnik, “A boundary Morera theorem”, J. Geometric Anal., 3:3 (1993), 269–277 | DOI | MR | Zbl

[5] D. Govekar-Leban, “Local boundary Morera theorems”, Math. Z., 233 (2000), 265–286 | DOI | MR | Zbl

[6] S. G. Myslivets, “On a boundary version of Morera's theorem”, Siberian Math. J., 42:5 (2001), 952–960 | DOI | MR | Zbl

[7] A. M. Kytmanov, S. G. Myslivets, “On families of complex lines sufficient for holomorphic extension”, Math. Notes, 83:4 (2008), 500–505 | DOI | MR | Zbl

[8] A. M. Kytmanov, S. G. Myslivets, “Some families of complex lines sufficient for holomorphic continuation of functions”, Russian Math. (Iz. VUZ), 55:4 (2011), 60–66 | DOI | MR | Zbl

[9] A. M. Kytmanov, S. G. Myslivets, Multidimensional Integral Representations. Problems of Analytic Continuation, Springer Verlag, Basel–Boston, 2015 | MR | Zbl

[10] A. M. Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser, Basel, 1995 | MR | MR | Zbl