@article{UFA_2020_12_3_a4,
author = {A. M. Kytmanov and S. G. Myslivets},
title = {On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain},
journal = {Ufa mathematical journal},
pages = {44--49},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/}
}
TY - JOUR AU - A. M. Kytmanov AU - S. G. Myslivets TI - On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain JO - Ufa mathematical journal PY - 2020 SP - 44 EP - 49 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/ LA - en ID - UFA_2020_12_3_a4 ER -
%0 Journal Article %A A. M. Kytmanov %A S. G. Myslivets %T On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain %J Ufa mathematical journal %D 2020 %P 44-49 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/ %G en %F UFA_2020_12_3_a4
A. M. Kytmanov; S. G. Myslivets. On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 44-49. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a4/
[1] E. A. Grinberg, “A boundary analogue of Morera's theorem in the unit ball of $\mathbb{C}^n$”, Proc. Amer. Soc., 102:1 (1988), 114–116 | MR | Zbl
[2] M. L. Agranovskii, R. E. Valskii, “Maximality of invariant algebras of functions”, Siberian Math. J., 12:1 (1971), 1–7 | DOI | MR | MR
[3] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[4] J. Globevnik, “A boundary Morera theorem”, J. Geometric Anal., 3:3 (1993), 269–277 | DOI | MR | Zbl
[5] D. Govekar-Leban, “Local boundary Morera theorems”, Math. Z., 233 (2000), 265–286 | DOI | MR | Zbl
[6] S. G. Myslivets, “On a boundary version of Morera's theorem”, Siberian Math. J., 42:5 (2001), 952–960 | DOI | MR | Zbl
[7] A. M. Kytmanov, S. G. Myslivets, “On families of complex lines sufficient for holomorphic extension”, Math. Notes, 83:4 (2008), 500–505 | DOI | MR | Zbl
[8] A. M. Kytmanov, S. G. Myslivets, “Some families of complex lines sufficient for holomorphic continuation of functions”, Russian Math. (Iz. VUZ), 55:4 (2011), 60–66 | DOI | MR | Zbl
[9] A. M. Kytmanov, S. G. Myslivets, Multidimensional Integral Representations. Problems of Analytic Continuation, Springer Verlag, Basel–Boston, 2015 | MR | Zbl
[10] A. M. Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser, Basel, 1995 | MR | MR | Zbl