Invariant subspaces in half-plane
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 30-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study subspaces of functions analytic in a half-plane and invariant with respect to the differentiation operator. A particular case of an invariant subspace is a space of solutions a linear homogeneous differential equation with constant coefficients. It is known that each solution of such equations is a linear combination of primitive solutions, which are exponential monomials with exponents being possibly multiple zeroes of a characteristic polynomial. The existence of such representation is called Euler fundamental principle. Other particular cases of invariant subspaces are spaces of solutions of linear homogeneous differential, difference and differential-difference equations with constant coefficients of both finite and infinite orders as well as of more general convolution equations and the systems of them. In the work we study the issue on fundamental principle for arbitrary invariant subspaces for arbitrary invariant subspaces of analytic functions in a half-plane. In other words, we study representation of all functions in an invariant subspace by the series of exponential monomials. These exponential monomials are eigenfunctions and adjoint functions for the differentiation operator in an invariant subspace. In the work we obtain a decomposition of an arbitrary invariant subspace of analytic functions into a sum of two invariant subspaces. We prove that the invariant subspace in an unbounded domain can be represented as a sum of two invariant subspaces. Their spectra correspond to a bounded and unbounded parts of a convex domain. On the base of this result we obtain a simple geometric criterion of the fundamental principle for an invariant subspace of analytic functions in a half-plane. It is formulated just in terms of the Krisvosheev condensation index for the sequence of exponents of the mentioned exponential monomials.
Keywords: invariant subspace, fundamental principle, exponential monomial, entire function, series of exponentials.
@article{UFA_2020_12_3_a3,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Invariant subspaces in half-plane},
     journal = {Ufa mathematical journal},
     pages = {30--43},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a3/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Invariant subspaces in half-plane
JO  - Ufa mathematical journal
PY  - 2020
SP  - 30
EP  - 43
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a3/
LA  - en
ID  - UFA_2020_12_3_a3
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Invariant subspaces in half-plane
%J Ufa mathematical journal
%D 2020
%P 30-43
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a3/
%G en
%F UFA_2020_12_3_a3
A. S. Krivosheev; O. A. Krivosheeva. Invariant subspaces in half-plane. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 30-43. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a3/

[1] A. F. Leont'ev, Entire functions. Exponential series, Nauka, M., 1983 (in Russian)

[2] I. F. Krasičkov-Ternovskiĭ, “Invariant subspaces of analytic functions. I. Spectral analysis on convex regions”, Math. USSR-Sb., 16:4 (1972), 471–500 | DOI

[3] I. F. Krasičkov-Ternovskiĭ, “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Math. USSR-Sb., 17:1 (1972), 1–29 | DOI

[4] A. A. Goldberg, B. Ya. Levin, I. V. Ostrovskii, “Entire and meromorphic functions”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 85, 1991, 5–185 (in Russian)

[5] A. S. Krivosheev, “A fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353 | DOI | MR | Zbl

[6] O. A. Krivosheeva, A. S. Krivosheev, “A criterion for the fundamental principle to hold for invariant subspaces on bounded convex domains in the complex plane”, Funct. Anal. Appl., 46:4 (2012), 249–261 | DOI | MR | Zbl

[7] A. S. Krivosheev, O. A. Krivosheeva, “A basis in an invariant subspace of analytic functions”, Sb. Math., 204:12 (2013), 1745–1796 | DOI | MR | Zbl

[8] A. S. Krivosheev, O. A. Krivosheeva, “Fundamental principle and a basis in invariant subspaces”, Math. Notes, 99:5 (2016), 685–696 | DOI | MR | Zbl

[9] A. S. Krivosheev, O. A. Krivosheyeva, “A basis in invariant subspace of entire functions”, St. Petersburg Math. J., 27:2 (2016), 273–316 | DOI | MR | Zbl

[10] A. S. Krivosheyev, O. A. Krivosheyeva, “A closedness of set of Dirichlet series sums”, Ufa Math. J., 5:3 (2013), 94–117 | DOI | MR

[11] O. A. Krivosheyeva, A. S. Krivosheyev, “A representation of functions from an invariant subspace with almost real spectrum”, St. Petersburg Math. J., 29:4 (2018), 603–641 | DOI | MR

[12] A. F. Leont'ev, “Sequences of exponential polynomials”, Nauka, M., 1980 (in Russian)

[13] B. Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1980 | MR

[14] B. N. Khabibullin, “On the growth of entire functions of exponential type along the imaginary axis”, Math. USSR-Sb., 67:1 (1990), 149–163 | DOI | MR | Zbl | Zbl

[15] P. Malliaven, L. Rubel, “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France, 89 (1961), 175–201 | DOI | MR