Mots-clés : kernel, positive solution.
@article{UFA_2020_12_3_a10,
author = {K. R. Prasad and M. Rashmita and N. Sreedhar},
title = {Solvability of higher order three-point iterative systems},
journal = {Ufa mathematical journal},
pages = {107--122},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/}
}
K. R. Prasad; M. Rashmita; N. Sreedhar. Solvability of higher order three-point iterative systems. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/
[1] K. Deimling, Nonlinear functional analysis, Springer-Verlag, New York, 1985 | MR | Zbl
[2] J. R. Graef, J. Henderson, B. Yang, “Positive solutions to a fourth order three-point boundary value problem”, Discr. Contin. Dyn. Syst., 2009, Special (2009), 269–275 | MR | Zbl
[3] J. R. Graef, B. Yang, “Multiple positive solutions to a three-point third order boundary value problem”, Discr. Contin. Dyn. Syst., 2005, Special (2005), 337–344 | MR | Zbl
[4] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Orlando, 1988 | MR | Zbl
[5] J. Henderson, S. K. Ntouyas, “Positive solutions for systems of $n^{th}$ order three-point nonlocal boundary value problems”, Electron. J. Qual. Theory Differ. Equ., 2007 (2007), 1–12 | DOI | MR
[6] J. Henderson, S. K. Ntouyas, I. K. Purnaras, “Positive solutions for systems of generalized threepoint nonlinear boundary value problems”, Comment. Math. Univ. Carolin., 49:1 (2008), 79–91 | MR | Zbl
[7] J. Henderson, S. K. Ntouyas, I. K. Purnaras, “Positive solutions for systems of second order four-point nonlinear boundary value problems”, Comm. Appl. Anal., 12:1 (2008), 29–40 | MR | Zbl
[8] M. A. Krasnosel'skii, Positive solutions of operator equations, P. Noordhoff Ltd, Groningen, 1964 | MR | Zbl
[9] A. G. Lakoud, L. Zenkoufi, “Existence of positive solutions for a fourth order three-point boundary value problem”, J. Appl. Math. Comput., 50 (2016), 139–155 | DOI | MR | Zbl
[10] X. Lin, Z. Zhao, “Iterative technique for a third order differential equation with three-point nonlinear boundary value conditions”, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–10 | DOI | MR
[11] Z. Liu, H. Chen, C. Liu, “Positive solutions for singular third order non-homogeneous boundary value problems”, J. Appl. Math. Comput., 38 (2012), 161–172 | DOI | MR | Zbl
[12] D. Liu, Z. Ouyang, “Solvability of third order three-point boundary value problems”, Abstr. Appl. Anal., 2014, 793639 | MR | Zbl
[13] A. P. Palamides, G. Smyrlis, “Positive solutions to a singular third order three-point boundary value problem with an indefinitely signed Green's function”, Nonlinear Anal. TMA, 68:7 (2008), 2104–2118 | DOI | MR | Zbl
[14] K. R. Prasad, N. Sreedhar, K. R. Kumar, “Solvability of iterative systems of three-point boundary value problems”, TWMS J. APP. Eng. Math., 3:2 (2013), 147–159 | MR | Zbl
[15] Y. Sun, “Positive solutions for third order three-point non-homogeneous boundary value problems”, Appl. Math. Lett., 22 (2009), 45–51 | DOI | MR | Zbl
[16] Y. Sun, C. Zhu, “Existence of positive solutions for singular fourth order three-point boundary value problems”, Adv. Difference Equ., 2013:51 (2013), 1–13 | MR
[17] C. X. Wang, H. R. Sun, “Positive solutions for a class of singular third order three-point nonhomogeneous boundary value problem”, Dynam. Syst. Appl., 19 (2010), 225–234 | MR | Zbl
[18] L. Zhao, W. Wang, C. Zhai, “Existence and uniqueness of monotone positive solutions for a third order three-point boundary value problem”, Differ. Equ. Appl., 10:3 (2018), 251–260 | MR | Zbl