Solvability of higher order three-point iterative systems
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an iterative system of nonlinear $n^{\text{th}}$ order differential equations: $$ y_i^{(n)}(t)+\lambda_i p_i(t)f_i(y_{i+1}(t))=0,\qquad 1\leq i\leq m,\qquad y_{m+1}(t)= y_1(t),\qquad t\in[0,1], $$ with three-point non-homogeneous boundary conditions $$ \begin{gathered} y_i(0)={y_i}'(0)=\cdots=y_i^{(n-2)}(0)=0, \\ \alpha_iy_i^{(n-2)}(1)-\beta_i y_i^{(n-2)}(\eta)=\mu_i,\qquad 1\leq i\leq m, \end{gathered} $$ where $n\geq 3,$ $\eta\in (0,1)$, $\mu_i\in (0, \infty)$ is a parameter, $f_i:\mathbb{R}^+ \rightarrow \mathbb{R}^+ $ is continuous, $p_i:[0,1] \rightarrow \mathbb{R}^+$ is continuous and $p_i$ does not vanish identically on any closed subinterval of $[0,1]$ for $1\leq i\leq m$. We express the solution of the boundary value problem as a solution of an equivalent integral equation involving kernels and obtain bounds for these kernels. By an application of Guo–Krasnosel'skii fixed point theorem on a cone in a Banach space, we determine intervals of the eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_m$ for which the boundary value problem possesses a positive solution. As applications, we provide examples demonstrating our results.
Keywords: boundary value problem, iterative system, three-point, eigenvalues, cone
Mots-clés : kernel, positive solution.
@article{UFA_2020_12_3_a10,
     author = {K. R. Prasad and M. Rashmita and N. Sreedhar},
     title = {Solvability of higher order  three-point iterative systems},
     journal = {Ufa mathematical journal},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/}
}
TY  - JOUR
AU  - K. R. Prasad
AU  - M. Rashmita
AU  - N. Sreedhar
TI  - Solvability of higher order  three-point iterative systems
JO  - Ufa mathematical journal
PY  - 2020
SP  - 107
EP  - 122
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/
LA  - en
ID  - UFA_2020_12_3_a10
ER  - 
%0 Journal Article
%A K. R. Prasad
%A M. Rashmita
%A N. Sreedhar
%T Solvability of higher order  three-point iterative systems
%J Ufa mathematical journal
%D 2020
%P 107-122
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/
%G en
%F UFA_2020_12_3_a10
K. R. Prasad; M. Rashmita; N. Sreedhar. Solvability of higher order  three-point iterative systems. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/