Solvability of higher order three-point iterative systems
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider an iterative system of nonlinear $n^{\text{th}}$ order differential equations: $$ y_i^{(n)}(t)+\lambda_i p_i(t)f_i(y_{i+1}(t))=0,\qquad 1\leq i\leq m,\qquad y_{m+1}(t)= y_1(t),\qquad t\in[0,1], $$ with three-point non-homogeneous boundary conditions $$ \begin{gathered} y_i(0)={y_i}'(0)=\cdots=y_i^{(n-2)}(0)=0, \\ \alpha_iy_i^{(n-2)}(1)-\beta_i y_i^{(n-2)}(\eta)=\mu_i,\qquad 1\leq i\leq m, \end{gathered} $$ where $n\geq 3,$ $\eta\in (0,1)$, $\mu_i\in (0, \infty)$ is a parameter, $f_i:\mathbb{R}^+ \rightarrow \mathbb{R}^+ $ is continuous, $p_i:[0,1] \rightarrow \mathbb{R}^+$ is continuous and $p_i$ does not vanish identically on any closed subinterval of $[0,1]$ for $1\leq i\leq m$. We express the solution of the boundary value problem as a solution of an equivalent integral equation involving kernels and obtain bounds for these kernels. By an application of Guo–Krasnosel'skii fixed point theorem on a cone in a Banach space, we determine intervals of the eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_m$ for which the boundary value problem possesses a positive solution. As applications, we provide examples demonstrating our results.
Keywords: boundary value problem, iterative system, three-point, eigenvalues, cone
Mots-clés : kernel, positive solution.
@article{UFA_2020_12_3_a10,
     author = {K. R. Prasad and M. Rashmita and N. Sreedhar},
     title = {Solvability of higher order three-point iterative systems},
     journal = {Ufa mathematical journal},
     pages = {107--122},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/}
}
TY  - JOUR
AU  - K. R. Prasad
AU  - M. Rashmita
AU  - N. Sreedhar
TI  - Solvability of higher order three-point iterative systems
JO  - Ufa mathematical journal
PY  - 2020
SP  - 107
EP  - 122
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/
LA  - en
ID  - UFA_2020_12_3_a10
ER  - 
%0 Journal Article
%A K. R. Prasad
%A M. Rashmita
%A N. Sreedhar
%T Solvability of higher order three-point iterative systems
%J Ufa mathematical journal
%D 2020
%P 107-122
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/
%G en
%F UFA_2020_12_3_a10
K. R. Prasad; M. Rashmita; N. Sreedhar. Solvability of higher order three-point iterative systems. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/

[1] K. Deimling, Nonlinear functional analysis, Springer-Verlag, New York, 1985 | MR | Zbl

[2] J. R. Graef, J. Henderson, B. Yang, “Positive solutions to a fourth order three-point boundary value problem”, Discr. Contin. Dyn. Syst., 2009, Special (2009), 269–275 | MR | Zbl

[3] J. R. Graef, B. Yang, “Multiple positive solutions to a three-point third order boundary value problem”, Discr. Contin. Dyn. Syst., 2005, Special (2005), 337–344 | MR | Zbl

[4] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Orlando, 1988 | MR | Zbl

[5] J. Henderson, S. K. Ntouyas, “Positive solutions for systems of $n^{th}$ order three-point nonlocal boundary value problems”, Electron. J. Qual. Theory Differ. Equ., 2007 (2007), 1–12 | DOI | MR

[6] J. Henderson, S. K. Ntouyas, I. K. Purnaras, “Positive solutions for systems of generalized threepoint nonlinear boundary value problems”, Comment. Math. Univ. Carolin., 49:1 (2008), 79–91 | MR | Zbl

[7] J. Henderson, S. K. Ntouyas, I. K. Purnaras, “Positive solutions for systems of second order four-point nonlinear boundary value problems”, Comm. Appl. Anal., 12:1 (2008), 29–40 | MR | Zbl

[8] M. A. Krasnosel'skii, Positive solutions of operator equations, P. Noordhoff Ltd, Groningen, 1964 | MR | Zbl

[9] A. G. Lakoud, L. Zenkoufi, “Existence of positive solutions for a fourth order three-point boundary value problem”, J. Appl. Math. Comput., 50 (2016), 139–155 | DOI | MR | Zbl

[10] X. Lin, Z. Zhao, “Iterative technique for a third order differential equation with three-point nonlinear boundary value conditions”, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–10 | DOI | MR

[11] Z. Liu, H. Chen, C. Liu, “Positive solutions for singular third order non-homogeneous boundary value problems”, J. Appl. Math. Comput., 38 (2012), 161–172 | DOI | MR | Zbl

[12] D. Liu, Z. Ouyang, “Solvability of third order three-point boundary value problems”, Abstr. Appl. Anal., 2014, 793639 | MR | Zbl

[13] A. P. Palamides, G. Smyrlis, “Positive solutions to a singular third order three-point boundary value problem with an indefinitely signed Green's function”, Nonlinear Anal. TMA, 68:7 (2008), 2104–2118 | DOI | MR | Zbl

[14] K. R. Prasad, N. Sreedhar, K. R. Kumar, “Solvability of iterative systems of three-point boundary value problems”, TWMS J. APP. Eng. Math., 3:2 (2013), 147–159 | MR | Zbl

[15] Y. Sun, “Positive solutions for third order three-point non-homogeneous boundary value problems”, Appl. Math. Lett., 22 (2009), 45–51 | DOI | MR | Zbl

[16] Y. Sun, C. Zhu, “Existence of positive solutions for singular fourth order three-point boundary value problems”, Adv. Difference Equ., 2013:51 (2013), 1–13 | MR

[17] C. X. Wang, H. R. Sun, “Positive solutions for a class of singular third order three-point nonhomogeneous boundary value problem”, Dynam. Syst. Appl., 19 (2010), 225–234 | MR | Zbl

[18] L. Zhao, W. Wang, C. Zhai, “Existence and uniqueness of monotone positive solutions for a third order three-point boundary value problem”, Differ. Equ. Appl., 10:3 (2018), 251–260 | MR | Zbl