Solvability of higher order  three-point iterative systems
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we consider an iterative system of nonlinear $n^{\text{th}}$ order differential equations:
$$
y_i^{(n)}(t)+\lambda_i p_i(t)f_i(y_{i+1}(t))=0,\qquad 1\leq i\leq m,\qquad y_{m+1}(t)= y_1(t),\qquad  t\in[0,1],
$$
with three-point non-homogeneous boundary conditions
$$
\begin{gathered}
y_i(0)={y_i}'(0)=\cdots=y_i^{(n-2)}(0)=0,
\\
\alpha_iy_i^{(n-2)}(1)-\beta_i y_i^{(n-2)}(\eta)=\mu_i,\qquad 1\leq i\leq m,
\end{gathered}
$$
where $n\geq 3,$ $\eta\in (0,1)$,  $\mu_i\in (0, \infty)$ is a parameter, $f_i:\mathbb{R}^+ \rightarrow \mathbb{R}^+ $ is continuous,
$p_i:[0,1] \rightarrow \mathbb{R}^+$ is continuous and $p_i$ does not vanish identically on any closed subinterval of $[0,1]$ for $1\leq i\leq m$.
We express the solution of the boundary value problem as  a solution of an equivalent integral equation involving kernels and
obtain bounds for these kernels. By an application of  Guo–Krasnosel'skii fixed point theorem on a cone in a Banach space, we determine intervals
of the eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_m$ for which the boundary value problem possesses a positive solution.
As  applications, we provide examples  demonstrating our results.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
boundary value problem, iterative system, three-point, eigenvalues, cone
Mots-clés : kernel, positive solution.
                    
                  
                
                
                Mots-clés : kernel, positive solution.
@article{UFA_2020_12_3_a10,
     author = {K. R. Prasad and M. Rashmita and N. Sreedhar},
     title = {Solvability of higher order  three-point iterative systems},
     journal = {Ufa mathematical journal},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/}
}
                      
                      
                    TY - JOUR AU - K. R. Prasad AU - M. Rashmita AU - N. Sreedhar TI - Solvability of higher order three-point iterative systems JO - Ufa mathematical journal PY - 2020 SP - 107 EP - 122 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/ LA - en ID - UFA_2020_12_3_a10 ER -
K. R. Prasad; M. Rashmita; N. Sreedhar. Solvability of higher order three-point iterative systems. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 107-122. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a10/
