Synthesizable sequence and principle submodules in Schwartz module
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 11-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a module of entire functions of exponential type and polynomial growth on the real axis, that is, the Schwarz module with a non-metrizable locally convex topology. In relation with the problem of spectral synthesis for the differentiation operator in the space $C^{\infty} (a;b)$, we study principle submodules in this module. In particular, we find out what functions, apart of products of the polynomials on the generating function, are contained in a principle submodule. The main results of the work is as follows: despite the topology in the Schwarz module is non-metrizable, the principle submodule coincides with a sequential closure of the set of products of its generating function by polynomials. As a corollary of the main result we prove a weight criterion of a weak localizability of the principle submodule. Another corollary concerns a notion of “synthesizable sequence” introduced recently by A. Baranov and Yu. Belov. It follows from a criterion of the synthesizable sequence obtained by these authors that a synthesizable sequence is necessary a zero set of a weakly localizable principle submodule. In the work we give a positive answer to a natural question on the validity of the inverse statement. Namely, we prove that the weak set of a weakly localizable principle submodule is a synthesizable sequence.
Keywords: entire functions, Schwarz space, local description of submodules, spectral synthesis.
Mots-clés : Fourier–Laplace transform
@article{UFA_2020_12_3_a1,
     author = {N. F. Abuzyarova},
     title = {Synthesizable sequence and principle submodules in {Schwartz} module},
     journal = {Ufa mathematical journal},
     pages = {11--21},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a1/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Synthesizable sequence and principle submodules in Schwartz module
JO  - Ufa mathematical journal
PY  - 2020
SP  - 11
EP  - 21
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a1/
LA  - en
ID  - UFA_2020_12_3_a1
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Synthesizable sequence and principle submodules in Schwartz module
%J Ufa mathematical journal
%D 2020
%P 11-21
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a1/
%G en
%F UFA_2020_12_3_a1
N. F. Abuzyarova. Synthesizable sequence and principle submodules in Schwartz module. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 11-21. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a1/

[1] A. Aleman, B. Korenblum, “Derivation-Invariant Subspaces of $C^\infty$”, Computation Methods and Function Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl

[2] N. F. Abuzyarova, “Spectral synthesis in the Schwartz space of infinitely differentiable functions”, Dokl. Math., 90:1 (2014), 479–482 | DOI | MR | Zbl

[3] A. Aleman, A. Baranov, Yu. Belov, “Subspaces of $C^\infty$ invariant under the differentiation”, Journal of Functional Analysis, 268 (2015), 2421–2439 | DOI | MR | Zbl

[4] N. F. Abuzyarova, “Spectral synthesis for the differentiation operator in the Schwartz space”, Math. Notes, 102:2 (2017), 137–148 | DOI | MR | MR | Zbl

[5] N. F. Abuzyarova, “Principal submodules in the module of entire functions, which is dual to the Schwarz space, and weak spectral synthesis in the Schwartz space”, Journal of Mathematical Sciences, 241:6 (2019), 658–671 | DOI | MR | Zbl

[6] N. F. Abuzyarova, “Some properties of principal submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufa Math. J., 8:1 (2016), 1–12 | DOI | MR

[7] A. Baranov, Yu. Belov, “Synthesizable differentiation-invariant subspaces”, Geometric and Functional Analysis, 29:1 (2019), 44–71 | DOI | MR | Zbl

[8] N. F. Abuzyarova, “On 2-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufa Math. J., 8:3 (2016), 8–21 | DOI | MR

[9] J. Sebastian-e-Silva, “On some classes of locally convex spaces important in applications-”, Matematika. Sbornik Perevodov, 1 (1957), 60–77 (in Russian)

[10] L. Hörmander, The analysis of linear partial differential operators, v. I, Distribution theory and Fourier analysis, Springer, Berlin, 1980 | MR

[11] I. F. Krasichkov-Ternovskii, “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi. I, II”, Izvestiya AN SSSR, seriya matem., 43:1, 44–66 ; 43:2 (1979), 309–341 ; I. F. Krasičkov-Ternovskiĭ, “Local description of closed ideals and submodules of analytic functions of one variable. I”, Math. USSR-Izvestiya, 14:1 (1980), 41–60 ; I. F. Krasičkov-Ternovskiĭ, “Local description of closed ideals and submodules of analytic functions of one variable. II”, Math. USSR-Izvestiya, 14:2 (1980), 289–316 | MR | MR | DOI | Zbl | DOI | Zbl

[12] N. F. Abuzyarova, “Closed submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufa Math. J., 6:4 (2014), 3–17 | DOI | MR

[13] N. F. Abuzyarova, “Principal submodules in the Schwartz module”, Russian Math., 64:5 (2020), 74–78 | DOI | MR | Zbl

[14] L. de Branges, Hilbert spaces of entire functions, Prentice-Hall Inc., N.J., 1968 | MR | Zbl

[15] Yu. Belov, “Complementability of exponential systems”, C.R. Math. Acad. Sci. Paris, 353 (2015), 215–218 | DOI | MR | Zbl