Poisson limit theorems in allocation schemes of distinguishable particles
Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a random variable $\mu_r(n, K, N)$ being the number of cells containing $r$ particles among first $K$ cells in an equiprobable allocation scheme of at most $n$ distinguishable particles over $N$ different cells. We find conditions ensuring the convergence of these random variables to a random Poisson variable. We describe a limit distribution. These conditions are of a simplest form, when the number of particles $r$ belongs to a bounded set or as $K$ is equivalent to $\sqrt{N}$. Then random variables $\mu_r(n, K, N)$ behave as the sums of independent identically distributed indicators, namely, as binomial random variables, and our conditions coincide with the conditions of a classical Poisson limit theorem. We obtain analogues of these theorems for an equiprobable allocation scheme of $n$ distinguishable particles of $N$ different cells. The proofs of these theorems are based on the Poisson limit theorem for the sums of exchangeable indicators and on an analogue of the local limit Gnedenko theorem.
Keywords: allocation scheme of distinguishable particles over different cells, Gaussian random variable, limit theorem, local limit theorem.
Mots-clés : Poisson random variable
@article{UFA_2020_12_3_a0,
     author = {F. A. Abdushukurov},
     title = {Poisson limit theorems in allocation schemes of distinguishable particles},
     journal = {Ufa mathematical journal},
     pages = {3--10},
     year = {2020},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a0/}
}
TY  - JOUR
AU  - F. A. Abdushukurov
TI  - Poisson limit theorems in allocation schemes of distinguishable particles
JO  - Ufa mathematical journal
PY  - 2020
SP  - 3
EP  - 10
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a0/
LA  - en
ID  - UFA_2020_12_3_a0
ER  - 
%0 Journal Article
%A F. A. Abdushukurov
%T Poisson limit theorems in allocation schemes of distinguishable particles
%J Ufa mathematical journal
%D 2020
%P 3-10
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a0/
%G en
%F UFA_2020_12_3_a0
F. A. Abdushukurov. Poisson limit theorems in allocation schemes of distinguishable particles. Ufa mathematical journal, Tome 12 (2020) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2020_12_3_a0/

[1] V. F. Kolchin, B. A. Sevastyanov, V. P. Chistyakov, Random allocations, John Wiley Sons, New York, 1978 | MR

[2] V. F. Kolchin, Random graphs, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[3] V. F. Kolchin, “A class of limit theorems for conditional distributions”, Litovsk. Matem. Sb., 8:1 (1968), 53–63 (in Russian) | Zbl

[4] A. N. Timashev, Asymptotic expansions in probabilistic combinatorics, OPiPM/Sci. Publ. House TVP, M., 2011 (in Russian)

[5] A. N. Timashev, Large deviations in probabilistic combinatorics, OPiPM/Publ. House Academia, M., 2011 (in Russian)

[6] A. N. Timashev, Generalized allocation scheme in probabilistic combinatorics problems, Publ. House Academia, M., 2011 (in Russian)

[7] A. N. Timashev, “Limit Poisson law for the distribution of the number of components in generalized allocation scheme”, Discrete Math. Appl., 29:4 (2019), 255–266 | DOI | MR | Zbl

[8] A. N. Chuprunov, I. Fazekas, “An analogue of the generalised allocation scheme: limit theorems for the maximum cell load”, Discrete Math. Appl., 22:3 (2012), 307–314 | DOI | MR | Zbl | Zbl

[9] E. R. Khakimullin, N. Yu. Enatskaya, “Limit theorems for the number of empty cells”, Discrete Math. Appl., 7:2 (1997), 209–219 | DOI | MR | Zbl

[10] V. A. Vatutin, V. G. Mihailov, “Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles”, Theory Probab. Appl., 27:4 (1983), 734–743 | DOI | MR | MR

[11] D. G. Kendall, “On finite and infinite sequences of exchangeble events”, Studia Sci. Math. Hangar., 2 (1967), 319–327 | MR | Zbl

[12] A. Chuprunov, I. Fazekas, “Poisson limit theorems for the for the generalized allocation scheme”, Annales Unive. Sci. Budapest, Sect. Comp., 49 (2019), 77–96 | MR | Zbl

[13] A. Benczúr, “On sequences of equivalent events and the compound Poisson process”, Studia Sci. Math. Hangar., 3 (1968), 451–458 | MR | Zbl