Regularity of almost periodic solutions of Poisson equation
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 97-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses some regularity of almost periodic solutions of the Poisson equation $-\Delta u = f$ in $\mathbb{R}^n$, where $f$ is an almost periodic function. It wasproved by Sibuya [Almost periodic solutions of Poisson's equation. Proc. Amer. Math. Soc., 28:195–198, 1971.] that if $u$ is a bounded continuous function and solves the Poisson equation in the distribution sense, then $u$ is an almost periodic function. In this work, we weaken the assumption of the usual boundedness to boundedness in the sense of distribution, which we refer to as a bounded generalized function. The set of bounded generalized functions are wider than the set of usual bounded functions. Then, assuming that $u$ is a bounded generalized function and solves the Poisson equation in the distribution sense, we prove that this solution is bounded in the usual sense, continuous and almost periodic. Moreover, we show that the first partial derivatives of the solution $\partial u/ \partial x_i$, $i=1, \ldots, n$, are also continuous, bounded and almost periodic functions. The technique is based on extending a representation formula using Green function for Poisson equation for solutions in the distribution sense. Some useful properties of distributions are also shown that can be used in studying other elliptic problems.
Keywords: almost periodic solutions, generalized solutions.
Mots-clés : Poisson equation
@article{UFA_2020_12_2_a9,
     author = {\`E. Muhamadiev and M. Nazarov},
     title = {Regularity of almost periodic solutions of {Poisson} equation},
     journal = {Ufa mathematical journal},
     pages = {97--107},
     year = {2020},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a9/}
}
TY  - JOUR
AU  - È. Muhamadiev
AU  - M. Nazarov
TI  - Regularity of almost periodic solutions of Poisson equation
JO  - Ufa mathematical journal
PY  - 2020
SP  - 97
EP  - 107
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a9/
LA  - en
ID  - UFA_2020_12_2_a9
ER  - 
%0 Journal Article
%A È. Muhamadiev
%A M. Nazarov
%T Regularity of almost periodic solutions of Poisson equation
%J Ufa mathematical journal
%D 2020
%P 97-107
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a9/
%G en
%F UFA_2020_12_2_a9
È. Muhamadiev; M. Nazarov. Regularity of almost periodic solutions of Poisson equation. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 97-107. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a9/

[1] H. Bohr, O. Neugebauer, “Uber lineare differentialgleichungen mit konstanten koeffizienten und fastperiodischer rechter seite”, Nachr. Ges. Wiss. Göttingen, Math. Phys., 1926 (1926), 8–22 | Zbl

[2] L. C. Evans, Partial differential equations, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[3] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1928), 31–81 | DOI | MR

[4] J. Favard, Leçons sur les fonctions presque-périodiques, Gauthier-Villars, Paris, 1933 | MR

[5] E. Muhamadiev, “The invertibility of partial differential operators of elliptic type”, Dokl. Akad. Nauk SSSR, 205:6 (1972), 1292–1295 | MR

[6] G. R. Sell, “Almost periodic solutions of linear partial differential equations”, J. Math. Anal. Appl., 42:2 (1973), 302–312 | DOI | MR | Zbl

[7] Y. Sibuya, “Almost periodic solutions of Poisson's equation”, Proc. Amer. Math. Soc., 28:1 (1971), 195–198 | MR | Zbl

[8] Russian Math. Surveys, 33:2 (1978), 1–52 | DOI | MR