Sectorial normalization of simplest germs of semi-hyperbolic maps in a half-neighborhood
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 72-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem on analytic classification of semi-hyperbolic maps on the plane for an example of the simplest class of germs, namely, the class of germs that are formally equivalent to $\mathsf{F}_{\lambda}$, which is the unit time shift along the vector field $x^2\frac{\partial}{\partial x}+{\lambda}y\frac{\partial}{\partial y},~\lambda\in\mathbb{R}_+$). A key step in the classification is an analytic normalization of the germs on sectorial domains forming a cut neighbourhood of the origin $(\mathbb{C}^2,0)\backslash\{x=0\}$. For this class, in the present work, we prove a theorem on a sectorial analytic normalization in the half-neighbourhood invariant with respect to $\mathsf{F}_{\lambda}^{-1}$. We also show that a formal normalizing change of the coordinates is asymptotic for the constructed sectorial normalizing change.
Keywords:
analytic classification, semi-hyperbolic maps, sectorial normalization.
@article{UFA_2020_12_2_a7,
author = {P. A. Shaikhullina},
title = {Sectorial normalization of simplest germs of semi-hyperbolic maps in a half-neighborhood},
journal = {Ufa mathematical journal},
pages = {72--87},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a7/}
}
TY - JOUR AU - P. A. Shaikhullina TI - Sectorial normalization of simplest germs of semi-hyperbolic maps in a half-neighborhood JO - Ufa mathematical journal PY - 2020 SP - 72 EP - 87 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a7/ LA - en ID - UFA_2020_12_2_a7 ER -
P. A. Shaikhullina. Sectorial normalization of simplest germs of semi-hyperbolic maps in a half-neighborhood. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 72-87. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a7/