Mots-clés : distribution
@article{UFA_2020_12_2_a6,
author = {M. V. Falaleev},
title = {Fundamental operator functions of integro-differential operators under spectral or polynomial boundedness},
journal = {Ufa mathematical journal},
pages = {56--71},
year = {2020},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a6/}
}
TY - JOUR AU - M. V. Falaleev TI - Fundamental operator functions of integro-differential operators under spectral or polynomial boundedness JO - Ufa mathematical journal PY - 2020 SP - 56 EP - 71 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a6/ LA - en ID - UFA_2020_12_2_a6 ER -
M. V. Falaleev. Fundamental operator functions of integro-differential operators under spectral or polynomial boundedness. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 56-71. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a6/
[1] V. S. Vladimirov, Generalized functions in mathematical physics, Mir Publishers, M., 1979
[2] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, New York, 1971 | MR | MR | Zbl
[3] A.A. Zamyshlyaeva, Higher order linear equations of Sobolev type, Izd. centr YuURGU, Chelyabinsk, 2012 (in Russian)
[4] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[5] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamental operator functions of singular differential operators under spectral boundedness conditions”, Differ. Equ., 42:6 (2006), 819–825 | DOI | MR | Zbl
[6] M. V. Falaleev, S. S. Orlov, “Degenerated integro-differential equations of special kind in Banach spaces and its applications”, Vestnik YuURGU. Ser. Matem. Model. Progr., 7:4 (2011), 100–110 (in Russian) | Zbl
[7] M. V. Falaleev, “Linear models in theory of viscoelasticity of Sobolev type”, Vestnik YuURGU. Ser. Matem. Model. Progr., 6:4 (2013), 101–107 (in Russian) | Zbl
[8] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov-Schmidt Methods in Nonlinaear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR
[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl
[10] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a NonLinear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl