@article{UFA_2020_12_2_a5,
author = {A. G. Tayshieva and T. R. Myrzakul and G. N. Nugmanova},
title = {On equivalence of one spin system and two-component {Camassa-Holm} equation},
journal = {Ufa mathematical journal},
pages = {50--55},
year = {2020},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/}
}
TY - JOUR AU - A. G. Tayshieva AU - T. R. Myrzakul AU - G. N. Nugmanova TI - On equivalence of one spin system and two-component Camassa-Holm equation JO - Ufa mathematical journal PY - 2020 SP - 50 EP - 55 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/ LA - en ID - UFA_2020_12_2_a5 ER -
A. G. Tayshieva; T. R. Myrzakul; G. N. Nugmanova. On equivalence of one spin system and two-component Camassa-Holm equation. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 50-55. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/
[1] A. Myrzakul, R. Myrzakulov, “Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrodinger equation”, Int. Jour. Geom. Meth. Mod. Phys., 14:10 (2017), 1750136 | DOI | MR | Zbl
[2] G. Nugmanova, A. Myrzakul, “Integrability of the Two-Layer Spin System”, Geom., Integr. and Quant., Proc. XXth Int. Conf., ed. I. Mladenov, Sofia, 2019, 208–214 | MR | Zbl
[3] R. Camassa, D. D. Holm, “An Integrable Shallow Water Equation with Peaked Solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl
[4] R. Camassa, D. D. Holm, J. M. Hyman, “A New Integrable Shallow Water Equation”, Adv. Appl. Mech., 31:1 (1994), 1–33 | MR | Zbl
[5] A. Constantin, V. Gerdjikov, R. I. Ivanov, “Inverse Scattering Transform for the Camassa-Holm equation”, Inverse Problem, 22:6 (2006), 2197–2207 | DOI | MR | Zbl
[6] I. I. Baltaeva, G. U. Urazboev, “About the Camassa-Holm equation with a self-consistent source”, Ufimskji Matem. Zhurn., 3:2 (2011), 10–19 (in Russian) | MR | Zbl
[7] Yuqin Yao, Yehui Huang, Yunbo Zeng, “The two-component Camassa-Holm equation with selfconsistent sources and its multisoliton solutions”, Theor. Math. Phys., 162:1 (2010), 63–73 | DOI | MR | Zbl
[8] Chen Chi, Zhou Zi-Xiang, “Darboux tranformation and exact solutions of the Myrzakulov-I equations”, Chin. Phys. Lett., 26:8 (2009), 080504 | DOI
[9] Chen Hai, Zhou Zi-Xiang, “Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation”, Chin. Phys. Lett., 31:12 (2014), 120504 | DOI
[10] V. E. Zakharov, L. A. Takhtadzhyan, “Equivalence of the nonlinear Schr?odinger equation and the equation of a Heisenberg ferromagnet”, Theor. Math. Phys., 38:1 (1979), 17–23 | DOI | MR