On equivalence of one spin system and two-component Camassa-Holm equation
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 50-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to studying an equivalence of a two-component Camassa-Holm equation and a spin system being a generalization of Heisenberg ferromagnet equation. It is known that the equivalence between two nonlinear integrable equations provides a possibility of an extended search of their various exact solutions. For Camassa-Holm equation, a method of inverse scattering problem can be applied via a system of linear partial differential equations with scalar coefficients. Contrary to Camassa-Holm equation, the coefficients of linear system corresponding to spin equations are related with symmetric matrix Lax representations. This is why, while establishing an equivalence between two above equations, additional difficulties arise. In view of this, we propose a matrix Lax representation for Camassa-Holm equation in a symmetric space. Employing this result, we establish a gauge equivalence between two-component Camassa-Holm equation and a spin system. We describe a relation between their solutions.
Keywords: two-component Camassa-Holm equation, matrix Lax representation, spin system, gauge equivalence.
@article{UFA_2020_12_2_a5,
     author = {A. G. Tayshieva and T. R. Myrzakul and G. N. Nugmanova},
     title = {On equivalence of one spin system and two-component {Camassa-Holm} equation},
     journal = {Ufa mathematical journal},
     pages = {50--55},
     year = {2020},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/}
}
TY  - JOUR
AU  - A. G. Tayshieva
AU  - T. R. Myrzakul
AU  - G. N. Nugmanova
TI  - On equivalence of one spin system and two-component Camassa-Holm equation
JO  - Ufa mathematical journal
PY  - 2020
SP  - 50
EP  - 55
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/
LA  - en
ID  - UFA_2020_12_2_a5
ER  - 
%0 Journal Article
%A A. G. Tayshieva
%A T. R. Myrzakul
%A G. N. Nugmanova
%T On equivalence of one spin system and two-component Camassa-Holm equation
%J Ufa mathematical journal
%D 2020
%P 50-55
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/
%G en
%F UFA_2020_12_2_a5
A. G. Tayshieva; T. R. Myrzakul; G. N. Nugmanova. On equivalence of one spin system and two-component Camassa-Holm equation. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 50-55. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a5/

[1] A. Myrzakul, R. Myrzakulov, “Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrodinger equation”, Int. Jour. Geom. Meth. Mod. Phys., 14:10 (2017), 1750136 | DOI | MR | Zbl

[2] G. Nugmanova, A. Myrzakul, “Integrability of the Two-Layer Spin System”, Geom., Integr. and Quant., Proc. XXth Int. Conf., ed. I. Mladenov, Sofia, 2019, 208–214 | MR | Zbl

[3] R. Camassa, D. D. Holm, “An Integrable Shallow Water Equation with Peaked Solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl

[4] R. Camassa, D. D. Holm, J. M. Hyman, “A New Integrable Shallow Water Equation”, Adv. Appl. Mech., 31:1 (1994), 1–33 | MR | Zbl

[5] A. Constantin, V. Gerdjikov, R. I. Ivanov, “Inverse Scattering Transform for the Camassa-Holm equation”, Inverse Problem, 22:6 (2006), 2197–2207 | DOI | MR | Zbl

[6] I. I. Baltaeva, G. U. Urazboev, “About the Camassa-Holm equation with a self-consistent source”, Ufimskji Matem. Zhurn., 3:2 (2011), 10–19 (in Russian) | MR | Zbl

[7] Yuqin Yao, Yehui Huang, Yunbo Zeng, “The two-component Camassa-Holm equation with selfconsistent sources and its multisoliton solutions”, Theor. Math. Phys., 162:1 (2010), 63–73 | DOI | MR | Zbl

[8] Chen Chi, Zhou Zi-Xiang, “Darboux tranformation and exact solutions of the Myrzakulov-I equations”, Chin. Phys. Lett., 26:8 (2009), 080504 | DOI

[9] Chen Hai, Zhou Zi-Xiang, “Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation”, Chin. Phys. Lett., 31:12 (2014), 120504 | DOI

[10] V. E. Zakharov, L. A. Takhtadzhyan, “Equivalence of the nonlinear Schr?odinger equation and the equation of a Heisenberg ferromagnet”, Theor. Math. Phys., 38:1 (1979), 17–23 | DOI | MR