@article{UFA_2020_12_2_a4,
author = {A. E. Salimova and B. N. Khabibullin},
title = {Growth of subharmonic functions along line and distribution of their {Riesz} measures},
journal = {Ufa mathematical journal},
pages = {35--49},
year = {2020},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a4/}
}
TY - JOUR AU - A. E. Salimova AU - B. N. Khabibullin TI - Growth of subharmonic functions along line and distribution of their Riesz measures JO - Ufa mathematical journal PY - 2020 SP - 35 EP - 49 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a4/ LA - en ID - UFA_2020_12_2_a4 ER -
A. E. Salimova; B. N. Khabibullin. Growth of subharmonic functions along line and distribution of their Riesz measures. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 35-49. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a4/
[1] W. K. Hayman, P. B. Kennedy, Subharmonic functions, Academic Press, London, 1976 | MR | Zbl
[2] Th. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[3] P. Malliavin, L. A. Rubel, “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France, 89:2 (1961), 175–201 | DOI | MR
[4] L. A. Rubel, Entire and Meromorphic Functions, Springer-Verlag, New York, 1996 (with J. E. Colliander) | MR | Zbl
[5] I. F. Krasichkov-Ternovskii, “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Math. USSR-Sb., 17:1 (1972), 1–29 | DOI | MR
[6] B. N. Khabibullin, “Smallness of the growth on the imaginary axis of entire functions of exponential type with given zeros”, Math. Notes, 43:5 (1988), 372–375 | DOI | MR | Zbl
[7] B. N. Khabibullin, “On the growth of entire functions of exponential type near a straight line”, Math. Notes, 70:4 (2001), 560–573 | DOI | MR | Zbl
[8] B. N. Khabibullin, “On the growth of exponential-type entire-functions along the imaginary axis”, Dokl. AN SSSR, 302:2 (1988), 270–273 (in Russian) | MR
[9] B. N. Khabibullin, “On the growth of entire functions of exponential type along the imaginary axis”, Math. USSR-Sbornik, 67:1 (1990), 149–163 | DOI | MR | Zbl | Zbl
[10] B. N. Khabibullin, “On the growth of the entire functions of exponential type with given zeros along a line”, Anal. Math., 17:3 (1991), 239–256 (in Russian) | DOI | MR | Zbl
[11] B. N. Khabibullin, Raspredelenie nulei tselykh funktsii i vymetanie, Diss. ... doktora fiz. matem. nauk, Ufa, 1992, 300 pp.; ФТИНТ, 1993, Украина, Харьков; ПОМИ РАН, РФ, Санкт-Петербург, 1994 [B. N. Khabibullin, Distribution of zeroes of entire functions and balayage, Habil. Thesis, Ufa, 1992] https://www.researchgate.net/publication/265455939
[12] B. N. Khabibullin, Completeness of exponential systems and uniqueness sets, 4th ed., Bashkir State University, Ufa, 2012 (in Russian)
[13] B. N. Khabibullin, A. V. Shmeleva, “Balayage of measures and subharmonic functions to a system of rays. I: The classical case”, St. Petersbg. Math. J., 31:1 (2020), 117–156 | DOI | MR | Zbl
[14] N. S. Landkof, Foundations of modern potential theory, Springer, Berlin, 1972 | MR | Zbl
[15] V. S. Azarin, Growth Theory of Subharmonic Functions, Birkhäser, Basel–Boston–Berlin, 2009 | MR | Zbl
[16] A. F. Grishin, T. I. Malyutina, “New formulae for indicators of subharmonic functions”, Matem. Fiz. Anal. Geom., 12:1 (2005), 5–72 (in Russian) | Zbl
[17] B. N. Khabibullin, A. V. Shmeleva, Z. F. Abdullina, “Balayage of measures and subharmonic functions to a system of rays. II. Balayage of finite kind and regularity of growth on one ray”, Alg. Anal., 32:1 (2020), 208–243 (in Russian) | MR
[18] M. R. Karimov, B. N. Khabibullin, “Coincidence of some distribution densities of set and completeness of systems of entire functions”, Proc. Int. Conf. Complex analysis, differential equations and related issues, v. III, Ufa, 2000, 29–34 (in Russian)