On families of isospectral Sturm–Liouville boundary value problems
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 28-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to describing all boundary value Sturm–Liouville problems on a finite segment with the same spectrum. Such problems are called isospectral and they were studied in works by E.L. Isaacson, H.P. McKean, B.E. Dahlberg, E. Trubowitz, M. Jodeit, B.M. Levitan, Y.A. Ashrafyan, T.N. Harutyunyan. Nowadays, there are various methods for solving inverse spectral problems: the method of transformation operator, that is, Gelfand-Levitan method, the method of spectral mappings, the method of etalon models and others. V.A. Marchenko showed, that the Sturm-Liouville operator on a finite segment is determined uniquely by its eigenvalues and a sequence of normalizing constants, that is, by its spectral function. I.M. Gelfand and B.M. Levitan found necessary and sufficient conditions on recovering boundary value Sturm–Liouville problems by their spectral functions. This method is based on recovering a potential and boundary conditions by spectral data by means of a Fredholm integral equation of a second kind with parameters. While constructing isospectral boundary value Sturm–Liouville problems with a prescribed spectrum $n^{2}$, $n \ge 0$, we have employed the Gelfand–Levitan method. The main result of the work is an algorithm for recovering a family of boundary value Sturm-Liouville problems $L=L(q(x),h, H)$, whose spectra satisfy the condition $\sigma(L)=\{n^2,n\ge 0\}$. At that, the found coefficients $ q=q(x, \gamma_1, \gamma_2, \ldots)$, $h=h(\gamma_1, \gamma_2, \ldots)$, $H=H(\gamma_1, \gamma_2, \ldots)$ depend on infinitely many parameters $\gamma_j$, $j= \overline{1,\infty}$.
Keywords: eigenvalues, normalizing constants, spectral data, inverse spectral problem, integral equation, isospectral operators.
Mots-clés : Sturm–Liouville problem
@article{UFA_2020_12_2_a3,
     author = {O. E. Mirzaev and A. B. Khasanov},
     title = {On families of isospectral {Sturm{\textendash}Liouville} boundary value problems},
     journal = {Ufa mathematical journal},
     pages = {28--34},
     year = {2020},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a3/}
}
TY  - JOUR
AU  - O. E. Mirzaev
AU  - A. B. Khasanov
TI  - On families of isospectral Sturm–Liouville boundary value problems
JO  - Ufa mathematical journal
PY  - 2020
SP  - 28
EP  - 34
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a3/
LA  - en
ID  - UFA_2020_12_2_a3
ER  - 
%0 Journal Article
%A O. E. Mirzaev
%A A. B. Khasanov
%T On families of isospectral Sturm–Liouville boundary value problems
%J Ufa mathematical journal
%D 2020
%P 28-34
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a3/
%G en
%F UFA_2020_12_2_a3
O. E. Mirzaev; A. B. Khasanov. On families of isospectral Sturm–Liouville boundary value problems. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 28-34. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a3/

[1] V. A. Marchenko, “Some questions of the theory of one-dimensional linear differential operators of the second order. I”, Trudy Mosk. Matem. Obsch., 1, 1952, 327–420 (in Russian)

[2] I. M. Gel'fand, B. M. Levitan, “On the determination of a differential equation from its spectral function”, Izv. Akad. Nauk SSSR. Ser. Mat., 15:4 (1951), 309–360 (in Russian) | Zbl

[3] B. M. Levitan, I. S. Sargsyan, Sturm-Liouville and Dirac operators, Kluwer Acad. Publ., Dordrecht, 1990 | MR | MR | Zbl

[4] E. L. Isaacson, E. Trubowitz, “The inverse Sturm-Liouville problem I”, Comm. Pure Appl. Math., 36:6 (1983), 767–783 | DOI | MR | Zbl

[5] E. L. Isaacson, H. P. McKean, E. Trubowitz, “The inverse Sturm-Liouville problem II”, Comm. Pure Appl. Math., 37:1 (1984), 1–11 | DOI | MR | Zbl

[6] B. E. Dahlberg, E. Trubowitz, “The inverse Sturm-Liouville problem III”, Comm. Pure Appl. Math., 37:2 (1984), 255–267 | DOI | MR | Zbl

[7] J. Pöschel, E. Trubowitz, Inverse spectral theory, Academic Press, New York, 1987 | MR | Zbl

[8] A. M. Savchuk, A. A. Shkalikov, “On the properties of maps connected with inverse Sturm-Liouville problems”, Proc. Steklov Inst. Math., 260 (2008), 218–237 | DOI | MR | Zbl

[9] V. A. Yurko, “Introduction into the theory of inverse spectral problems”, Fizmatlit, M., 2007

[10] M. Jodeit, B. M. Levitan, “The isospectrality problem for the classical Sturm-Liouville equation”, Advances in differential equations, 2:2 (1997), 297–318 | MR | Zbl

[11] Y. A. Ashrafyan, T. N. Harutyunyan, “Inverse Sturm–Liouville problems with fixed boundary conditions”, Electronic Journal of differential equations, 2015:27 (2015), 1–18 | MR