@article{UFA_2020_12_2_a1,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Overdetermined {Neumann} boundary value problem in unbounded domains},
journal = {Ufa mathematical journal},
pages = {10--20},
year = {2020},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a1/}
}
V. V. Volchkov; Vit. V. Volchkov. Overdetermined Neumann boundary value problem in unbounded domains. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 10-20. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a1/
[1] J. Serrin, “A symmetry problem in potential theory”, Arch. Rat. Mech. Anal., 43:1 (1971), 304–318 | DOI | MR | Zbl
[2] L. E. Payne, G. A. Philippin, “On two free boundary problems in potential theory”, J. Math. Anal. Appl., 161:2 (1991), 332–342 | DOI | MR | Zbl
[3] C. A. Berenstein, M. Shahshahani, “Harmonic analysis and the Pompeiu problem”, Amer. J. Math., 105:5 (1983), 1217–1229 | DOI | MR | Zbl
[4] V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer, Dordrecht, 2003 | MR | Zbl
[5] R. L. Fosdick, J. Serrin, “Rectilinear steady flow of simple fluids”, Proc. R. Soc. Lond. A, 332:1590 (1973), 311–333 | DOI | MR | Zbl
[6] G. A. Philippin, “On a free boundary problem in Electrostatics”, Math. Meth. Appl. Sci., 12:5 (1990), 387–392 | DOI | MR | Zbl
[7] O. Mendez, W. Reichel, “Electrostatic characterization of spheres”, Forum Math., 12:2 (2000), 223–245 | MR | Zbl
[8] B. Sirakov, “Symmetry for exterior elliptic problems and two conjectures in potential theory”, Ann. Inst. Henri Poincaré, Anal. non Linéaire, 18:2 (2001), 135–156 | DOI | MR | Zbl
[9] W. Reichel, “Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains”, Z. Anal. Anwendungen., 15:3 (1996), 619–635 | DOI | MR | Zbl
[10] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, eds. Fuglede B. et. al., Kluwer, Dordrecht, 1992, 185–194 | DOI | MR
[11] V. V. Volchkov, Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl
[12] S. A. Williams, “Analyticity of the boundary for Lipschitz domains without the Pompeiu property”, Indiana Univ. Math. J., 30:3 (1981), 357–369 | DOI | MR | Zbl
[13] L. A. Caffarelli, L. Karp, H. Shahgholian, “Regularity of a free boundary with application to the Pompeiu problem”, Ann. of Math., 151:2 (2000), 269–292 | DOI | MR | Zbl
[14] C. A. Berenstein, P. Yang, “An overdetermined Neumann problem in the unit disk”, Adv. in Math., 44:1 (1982), 1–17 | DOI | MR | Zbl
[15] N. B. Willms, G. M. L. Gladwell, “Saddle points and overdetermined problems for the Helmholtz equation”, Z. Angew Math. Phys., 45:1 (1994), 1–26 | DOI | MR | Zbl
[16] P. W. Schaefer, “On nonstandard overdetermined boundary value problems”, Nonlinear Analysis, 47:4 (2001), 2203–2212 | DOI | MR | Zbl
[17] N. Garofalo, E. Sartori, “Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a priori estimates”, Adv. Diff. Eqs., 4:2 (1999), 137–161 | MR | Zbl
[18] W. Reichel, “Radial symmetry for elliptic boundary-value problems on exterior domains”, Arch. Rational Mech. Anal., 137:6 (1997), 381–394 | DOI | MR | Zbl
[19] G. A. Philippin, “Applications of the maximum principle to a variety of problems involving elliptic differential equations”, Pitman Res. Notes Math. Ser., 175 (1988), 34–48 | MR | Zbl
[20] A. D. Alexandrov, “A characteristic property of the spheres”, Ann. Mat. Pura Appl., 58:1 (1962), 303–315 | DOI | MR
[21] L. E. Payne, P. W. Schaefer, “Duality theorems in some overdetermined problems”, Math. Methods in the Appl. Sciences, 11:6 (1989), 805–819 | DOI | MR | Zbl
[22] M. Choulli, A. Henrot, “Use of the domain derivative to prove symmetry results in partial differential equations”, Math. Nachr., 192:1 (1998), 91–103 | DOI | MR | Zbl
[23] B. Brandolini, C. Nitsch, P. Salani, C. Trombetti, “Serrin type overdetermined problems: an alternative proof”, Arch. Rational Mech. Anal., 190:2 (2008), 267–280 | DOI | MR | Zbl
[24] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monog., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[25] B. Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1980 | MR