Integration of equations of Kaup system kind with self-consistent source in class of periodic functions
Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 103-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the equations of Kaup system kind with a self-consistent source in the class of periodic functions. We discuss the complete integrability of the considered nonlinear system of equations, which is based on the transformation to the spectral data of an associated quadratic pencil of Sturm–Liouville equations with periodic coefficients. In particular, Dubrovin-type equations are derived for the time-evolution of the spectral data corresponding to the solutions of equations of Kaup system kind with self-consistent source in the class of periodic functions. Moreover, it is shown that spectrum of the quadratic pencil of Sturm–Liouville equations with periodic coefficients associated with considering nonlinear system does not depend on time. In a one-gap case, we write the explicit formulae for solutions of the problem under consideration expressed in terms of the Jacobi elliptic functions. We show that if $p_{0} (x)$ and $q_{0} (x)$ are real analytical functions, the lengths of the gaps corresponding to these coefficients decrease exponentially. The gaps corresponding to the coefficients $p(x,t)$ and $q(x,t)$ are same. This implies that the solutions of considered problem $p(x,t)$ and $q(x,t)$ are real analytical functions in $x$.
Keywords: equations of Kaup system kind, quadratic pencil of Sturm–Liouville equations, inverse spectral problem, trace formulas, periodical potential.
@article{UFA_2020_12_1_a7,
     author = {A. B. Yakhshimuratov and B. A. Babajanov},
     title = {Integration of equations of {Kaup} system kind with self-consistent source in class of periodic functions},
     journal = {Ufa mathematical journal},
     pages = {103--113},
     year = {2020},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/}
}
TY  - JOUR
AU  - A. B. Yakhshimuratov
AU  - B. A. Babajanov
TI  - Integration of equations of Kaup system kind with self-consistent source in class of periodic functions
JO  - Ufa mathematical journal
PY  - 2020
SP  - 103
EP  - 113
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/
LA  - en
ID  - UFA_2020_12_1_a7
ER  - 
%0 Journal Article
%A A. B. Yakhshimuratov
%A B. A. Babajanov
%T Integration of equations of Kaup system kind with self-consistent source in class of periodic functions
%J Ufa mathematical journal
%D 2020
%P 103-113
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/
%G en
%F UFA_2020_12_1_a7
A. B. Yakhshimuratov; B. A. Babajanov. Integration of equations of Kaup system kind with self-consistent source in class of periodic functions. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 103-113. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/

[1] D.J. Kaup, “A higher-order water-wave equation and the method for solving it”, Prog. Theor. Phys., 54:2 (1975), 396–408 | DOI | MR | Zbl

[2] V.B. Matveev, M.I. Yavor, “Solutions Presque périodiques et a $n$-solitons de l'équation hydrodynamique nonlinéaire de Kaup”, Ann. Inst. Henri Poincare, Sect. A, 31:1 (1979), 25–41 | MR | Zbl

[3] A.O. Smirnov, “Real finite-gap regular solutions of the Kaup-Boussinesq equation”, Theor. Math. Phys., 66:1 (1986), 19–31 | DOI | MR | Zbl

[4] A.O. Smirnov, “A matrix analogue of Appell's theorem and reductions of multi-dimensional Riemann theta-functions”, Math. USSR-Sb., 61:2 (1988), 379–388 | DOI | MR | Zbl

[5] Yu.A. Mitropol'skii, N.N. Bogolyubov (Jr.), A.K. Prikarpatskii, V.G. Samoilenko, Integrable dynamical systems: spectral and differential geometric aspects, Naukova Dumka, Kiev, 1987 (in Russian) | MR

[6] M. Jaulent, I. Miodek, “Nonlinear evolution equation associated with energy-dependent Schrödinger potentials”, Lett. Math. Phys., 1:3 (1976), 243–250 | DOI | MR | Zbl

[7] A. Cabada, A. Yakhshimuratov, “The system of Kaup equations with a self-consistent source in the class of periodic functions”, J. Math. Phys. Anal. Geom., 9:3 (2013), 287–303 | MR | Zbl

[8] G.Sh. Guseinov, “On a quadratic pencil of Sturm-Liouville operators with periodic coefficients”, Vestnik Moskov. Univ., Ser. 1 Math. Mekh., 3:2 (1984), 14–21 (in Russian) | MR

[9] G.Sh. Guseinov, “Spectrum and eigenfunction expansions of a quadratic pencil of Sturm-Liouville operators with periodic coefficients”, Spectral theory of operators and its applications, 6, “Elm”, Baku, 1985, 56–97 | MR

[10] G.Sh. Guseinov, “On Spectral analysis of a quadratic pencil of Sturm-Liouville operators”, Soviet Math. Dokl., 32:3 (1985), 1859–1862 | MR

[11] G.Sh. Guseinov, “Inverse problems for a quadratic pencil of Sturm-Liouville operators on a finite interval”, Spectral theory of operators and its applications, 7, “Elm”, Baku, 1986, 51–101 | MR

[12] B.A. Babadzhanov, A.B. Khasanov, “Inverse problem for a quadratic pencil of Shturm-Liouville operators with finite-gap pereodic potential on the half-line”, Diff. Equats., 43:6 (2007), 723–730 | MR

[13] B.A. Babadzhanov, A.B. Khasanov, A.B. Yakhshimuratov, “On the inverse problem for a quadratic pencil of Sturm-Liouville operators with periodic potential”, Diff. Equats., 41:3 (2005), 310–318 | DOI | MR | Zbl

[14] V.K. Melnikov, “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the $x,y$ plane”, Comm. Math. Phys., 112:4 (1987), 639–52 | DOI | MR

[15] V.K. Melnikov, “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1988), 493–496 | DOI | MR

[16] V.K. Melnikov, “Integration of the nonlinear Schrödinger equation with a self-consistent source”, Comm. Math. Phys., 137:2 (1991), 359–381 | DOI | MR | Zbl

[17] V.K. Melnikov, “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR | Zbl

[18] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23:8 (1990), 1385–1403 | DOI | MR | Zbl

[19] C. Claude, J. Leon, A. Latifi, “Nonlinear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR | Zbl

[20] V.S. Shchesnovich, E.V. Doktorov, “Modified Manakov system with self-consistent source”, Phys. Lett. A, 213:1-2 (1996), 23–31 | DOI | MR | Zbl

[21] D.J. Zhang, D.Y. Chen, “The $N$-soliton solutions of the sine-Gordon equation with self-consistent sources”, Physica A: Stat. Mech. Appl., 321:3-4 (2003), 467–481 | DOI | MR | Zbl

[22] P.G. Grinevich, I.A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, topology, and mathematical physics. S. P. Novikov's seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V.M. Buchstaber, I.M. Krichever, 2008, 125–138 | DOI | MR | Zbl

[23] A.B. Khasanov, A.B. Yakhshimuratov, “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theor. Math. Phys., 164:2 (2010), 1008–1015 | DOI | MR | Zbl

[24] A.B. Yakhshimuratov, “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR | Zbl

[25] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl

[26] A.B. Yakhshimuratov, “Analogue of the inverse theorem of Borg for a quadratic pencil of operators of Sturm-Liouville”, Bull. Eletski State University. Ser. Math. Comp. Math., 8:1 (2005), 121–126

[27] Academic Press, San Diego, 2000 | MR | Zbl