@article{UFA_2020_12_1_a7,
author = {A. B. Yakhshimuratov and B. A. Babajanov},
title = {Integration of equations of {Kaup} system kind with self-consistent source in class of periodic functions},
journal = {Ufa mathematical journal},
pages = {103--113},
year = {2020},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/}
}
TY - JOUR AU - A. B. Yakhshimuratov AU - B. A. Babajanov TI - Integration of equations of Kaup system kind with self-consistent source in class of periodic functions JO - Ufa mathematical journal PY - 2020 SP - 103 EP - 113 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/ LA - en ID - UFA_2020_12_1_a7 ER -
%0 Journal Article %A A. B. Yakhshimuratov %A B. A. Babajanov %T Integration of equations of Kaup system kind with self-consistent source in class of periodic functions %J Ufa mathematical journal %D 2020 %P 103-113 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/ %G en %F UFA_2020_12_1_a7
A. B. Yakhshimuratov; B. A. Babajanov. Integration of equations of Kaup system kind with self-consistent source in class of periodic functions. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 103-113. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a7/
[1] D.J. Kaup, “A higher-order water-wave equation and the method for solving it”, Prog. Theor. Phys., 54:2 (1975), 396–408 | DOI | MR | Zbl
[2] V.B. Matveev, M.I. Yavor, “Solutions Presque périodiques et a $n$-solitons de l'équation hydrodynamique nonlinéaire de Kaup”, Ann. Inst. Henri Poincare, Sect. A, 31:1 (1979), 25–41 | MR | Zbl
[3] A.O. Smirnov, “Real finite-gap regular solutions of the Kaup-Boussinesq equation”, Theor. Math. Phys., 66:1 (1986), 19–31 | DOI | MR | Zbl
[4] A.O. Smirnov, “A matrix analogue of Appell's theorem and reductions of multi-dimensional Riemann theta-functions”, Math. USSR-Sb., 61:2 (1988), 379–388 | DOI | MR | Zbl
[5] Yu.A. Mitropol'skii, N.N. Bogolyubov (Jr.), A.K. Prikarpatskii, V.G. Samoilenko, Integrable dynamical systems: spectral and differential geometric aspects, Naukova Dumka, Kiev, 1987 (in Russian) | MR
[6] M. Jaulent, I. Miodek, “Nonlinear evolution equation associated with energy-dependent Schrödinger potentials”, Lett. Math. Phys., 1:3 (1976), 243–250 | DOI | MR | Zbl
[7] A. Cabada, A. Yakhshimuratov, “The system of Kaup equations with a self-consistent source in the class of periodic functions”, J. Math. Phys. Anal. Geom., 9:3 (2013), 287–303 | MR | Zbl
[8] G.Sh. Guseinov, “On a quadratic pencil of Sturm-Liouville operators with periodic coefficients”, Vestnik Moskov. Univ., Ser. 1 Math. Mekh., 3:2 (1984), 14–21 (in Russian) | MR
[9] G.Sh. Guseinov, “Spectrum and eigenfunction expansions of a quadratic pencil of Sturm-Liouville operators with periodic coefficients”, Spectral theory of operators and its applications, 6, “Elm”, Baku, 1985, 56–97 | MR
[10] G.Sh. Guseinov, “On Spectral analysis of a quadratic pencil of Sturm-Liouville operators”, Soviet Math. Dokl., 32:3 (1985), 1859–1862 | MR
[11] G.Sh. Guseinov, “Inverse problems for a quadratic pencil of Sturm-Liouville operators on a finite interval”, Spectral theory of operators and its applications, 7, “Elm”, Baku, 1986, 51–101 | MR
[12] B.A. Babadzhanov, A.B. Khasanov, “Inverse problem for a quadratic pencil of Shturm-Liouville operators with finite-gap pereodic potential on the half-line”, Diff. Equats., 43:6 (2007), 723–730 | MR
[13] B.A. Babadzhanov, A.B. Khasanov, A.B. Yakhshimuratov, “On the inverse problem for a quadratic pencil of Sturm-Liouville operators with periodic potential”, Diff. Equats., 41:3 (2005), 310–318 | DOI | MR | Zbl
[14] V.K. Melnikov, “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the $x,y$ plane”, Comm. Math. Phys., 112:4 (1987), 639–52 | DOI | MR
[15] V.K. Melnikov, “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1988), 493–496 | DOI | MR
[16] V.K. Melnikov, “Integration of the nonlinear Schrödinger equation with a self-consistent source”, Comm. Math. Phys., 137:2 (1991), 359–381 | DOI | MR | Zbl
[17] V.K. Melnikov, “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR | Zbl
[18] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23:8 (1990), 1385–1403 | DOI | MR | Zbl
[19] C. Claude, J. Leon, A. Latifi, “Nonlinear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR | Zbl
[20] V.S. Shchesnovich, E.V. Doktorov, “Modified Manakov system with self-consistent source”, Phys. Lett. A, 213:1-2 (1996), 23–31 | DOI | MR | Zbl
[21] D.J. Zhang, D.Y. Chen, “The $N$-soliton solutions of the sine-Gordon equation with self-consistent sources”, Physica A: Stat. Mech. Appl., 321:3-4 (2003), 467–481 | DOI | MR | Zbl
[22] P.G. Grinevich, I.A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, topology, and mathematical physics. S. P. Novikov's seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V.M. Buchstaber, I.M. Krichever, 2008, 125–138 | DOI | MR | Zbl
[23] A.B. Khasanov, A.B. Yakhshimuratov, “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theor. Math. Phys., 164:2 (2010), 1008–1015 | DOI | MR | Zbl
[24] A.B. Yakhshimuratov, “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR | Zbl
[25] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl
[26] A.B. Yakhshimuratov, “Analogue of the inverse theorem of Borg for a quadratic pencil of operators of Sturm-Liouville”, Bull. Eletski State University. Ser. Math. Comp. Math., 8:1 (2005), 121–126