@article{UFA_2020_12_1_a4,
author = {A. V. Chernov},
title = {On preservation of global solvability of controlled second kind operator equation},
journal = {Ufa mathematical journal},
pages = {56--81},
year = {2020},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a4/}
}
A. V. Chernov. On preservation of global solvability of controlled second kind operator equation. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 56-81. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a4/
[1] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 (in German) | MR | Zbl
[2] J.L. Lions, Contrôle des systèmes distribués singuliers, Gauthier-Villars, Bordas–Paris, 1983 (in French) | MR
[3] A.V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monog., 187, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[4] V.I. Sumin, Functional Volterra equations in mathematical theory of optimal control of distributed systems, Habilitation Thesis, Nizhni Novgorod State Univ., Nizhni Novgorod, 1998 (in Russian)
[5] A.V. Chernov, Volterra operator equations and their applications in optimisation theory of hyperbolic systems, PhD Thesis, Nizhni Novgorod State Univ., Nizhni Novgorod, 2000 (in Russian)
[6] V.I. Sumin, “The features of gradient methods for distributed optimal control problems”, USSR Comput. Math. Math. Phys., 30:1 (1990), 1–15 | DOI | MR | Zbl
[7] A.V. Chernov, “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Comput. Math. Math. Phys., 53:12 (2013), 1839–1852 | DOI | DOI | MR | Zbl
[8] V.K. Kalantarov, O.A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl
[9] V.I. Sumin, Functional Volterra equations in theory of optimal control of distributed systems, v. I, Nizhni Novgorod State Univ., Nizhni Novgorod, 1992 (in Russian)
[10] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1987 | MR | MR
[11] M.O. Korpusov, A.G. Sveshnikov, “Blow-up of solutions to strongly nonlinear equations of the pseudoparabolic type”, Sovrem. Matem. Pril., 40 (2006), 3–138 (in Russian)
[12] F. Tröltzsch, Optimal control of partial differential equations: theory, methods and applications, Graduate Studies in Mathematics, 112, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[13] C. Carasso, E.H. Hassnaoui, “Mathematical analysis of the model arising in study of chemical reactions in a catalytic cracking reactor”, Math. Comput. Modelling, 18:2 (1993), 93–109 | DOI | MR | Zbl
[14] T. Kobayashi, H. Pecher, Y. Shibata, “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Math. Ann., 296:2 (1993), 215–234 | DOI | MR | Zbl
[15] P. Biler, D. Hilhorst, T. Nadzieja, “Existence and nonexistence of solutions for a model of gravitational interaction of particles. II”, Colloq. Math., 67:2 (1994), 297–308 | DOI | MR | Zbl
[16] B. Hu, H.-M. Yin, “Global solutions and quenching to a class of quasilinear parabolic equations”, Forum Math., 6:3 (1994), 371–383 | MR | Zbl
[17] G. Lu, “Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem”, Nonlinear Anal., Theory Methods Appl., 24:8 (1995), 1193–1206 | DOI | MR | Zbl
[18] T. Yamazaki, “Scattering for a quasilinear hyperbolic equation of Kirchhoff type”, J. Differ. Equations, 143:1 (1998), 1–59 | DOI | MR | Zbl
[19] F. Catalano, “The nonlinear Klein-Gordon equation with mass decreasing to zero”, Adv. Differ. Equ., 7:9 (2002), 1025–1044 | MR | Zbl
[20] M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano, “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, J. Math. Anal. Appl., 281:1 (2003), 108–124 | DOI | MR | Zbl
[21] A. Rozanova-Pierrat, “Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation”, Math. Models Methods Appl. Sci., 18:5 (2008), 781–812 | DOI | MR | Zbl
[22] X. Zhao, “Self-similar solutions to a generalized Davey-Stewartson system”, Math. Comput. Modelling, 50:9–10 (2009), 1394–1399 | DOI | MR | Zbl
[23] M.O. Korpusov, A.V. Ovchinnikov, A.G. Sveshnikov, “On blow up of generalized Kolmogorov-Petrovskii-Piskunov equation”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 71:11 (2009), 5724–5732 | DOI | MR | Zbl
[24] A.M. Blokhin, D.L. Tkachev, “Asymptotic stability of the stationary solution for a new mathematical model of charge transport in semiconductors”, Q. Appl. Math., 70:2 (2012), 357–382 | DOI | MR | Zbl
[25] H. Saito, “Global solvability of the Navier-Stokes equations with a free surface in the maximal regularity $L_p - L_q$ class”, J. Differ. Equations, 264:3 (2018), 1475–1520 | DOI | MR | Zbl
[26] V.I. Sumin, “Stability problem for the existence of global solutions to boundary value control problems and Volterra functional equations”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, Mat., 1 (2003), 91–107 (in Russian) | Zbl
[27] V.I. Sumin. A.V. Chernov, “Volterra functional-operator equations in optimisation theory of distributed systems”, Proceedings of International Conference “Dynamics of systems and control processes” dedicated to 90th anniversary of acad. N.N. Krasovskii (Ekaterinburg), 2015, 293–300 (in Russian)
[28] A.V. Chernov, “On total global solvability of a controlled Hammerstein type equations with a varying linear operator”, Vestnik Udmurt Univ. Matem. Mekh. Komputer. Nauki, 25:2 (2015), 230–243 (in Russian) | Zbl
[29] A.V. Chernov, “Preservation of the Solvability of a Semilinear Global Electric Circuit Equation”, Comput. Math. Math. Phys., 58:12 (2018), 2018–2030 | DOI | MR | Zbl
[30] A.V. Chernov, “The total preservation of unique global solvability of the first kind operator equation with additional controlled nonlinearity”, Russ. Math. Iz. VUZ, 62:11 (2018), 53–66 | DOI | MR | Zbl
[31] V.A. Solonnikov, “Estimates of solutions to a Navier–Stokes non-stationary system”, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 38, 1973, 153–231 (in Russian) | Zbl
[32] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[33] A.A. Kiselev, O.A. Ladyženskaya, “On the existence and uniqueness of solutions of the non-stationary problems for flows of noncompressible fluids”, AMS Transl. Ser. 2, 24, AMS, Providence, RI, 1963, 79–106 | Zbl
[34] G. Prodi, “Un teorema di unicità per le equazioni di Navier–Stokes”, Ann. Mat. Pura Appl., 48:4 (1959), 173–182 (in Itaian) | DOI | MR | Zbl
[35] J. Serrin, “The initial value problem for the Navier–Stokes equations”, Nonlinear Problems, Univ. of Wisconsin Press, Madison, WI, 1963, 69–98 | MR
[36] H. Kozono, H. Sohr, “Remarks on uniqueness of weak solutions to the Navier–Stokes equations”, Analysis, 16:3 (1996), 255–271 | DOI | MR | Zbl
[37] O.A. Ladyzhenskaya, “Sixth problem of the millenium: Navier–Stokes equations, existence and smoothness”, Russ. Math. Surveys, 58:2 (2003), 251–286 | DOI | DOI | MR | Zbl
[38] H. Jia, V. Sverak, “Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space?”, J. Funct. Anal., 268:12 (2015), 3734–3766 | DOI | MR | Zbl
[39] G.A. Seregin, T.N. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Russ. Math. Surveys, 73:4 (2018), 661–724 | DOI | MR | Zbl
[40] M.M. Karchevskii, M.F. Pavlova, Equations of mathematical physics. Additional chapters, Kazan State Univ., Kazan, 2012 (in Russian)