@article{UFA_2020_12_1_a2,
author = {Kh. K. Ishkin and R. I. Marvanov},
title = {Equivalence criterion for two asymptotic formulae},
journal = {Ufa mathematical journal},
pages = {30--42},
year = {2020},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/}
}
Kh. K. Ishkin; R. I. Marvanov. Equivalence criterion for two asymptotic formulae. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/
[1] G.V. Rozenblum, M.Z. Solomyak, M.A. Shubin, “Spectral theory of differential operators”, Partial differential equations-7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 64, 1989, 5–242 (in Russian)
[2] V.A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser Verlag, Basel, 1986 | MR | MR | Zbl
[3] M. Reed, B. Simon, Methods of modern mathematical physics, v. 4, Academic Press, New York, 1978 | MR | Zbl
[4] L. Hörmander, The analysis of linear partial differential operators, v. III, Pseudo-differential operators, Springer-Verlag, Berlin, 1985 | MR
[5] D.G. Vasil'ev, “Asymptotics of the spectrum of a boundary value problem”, Trudy Mosk. Mat. Obschestva, 49 (1986), 167–237 (in Russian) | Zbl
[6] H. Weyl, “Das Asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Mathematische Annalen, 71:4 (1912), 441–479 | DOI | MR | Zbl
[7] Kac M., Can One Hear the Shape of a Drum?, The American Mathematical Monthly, 73:4 (1966), 1–23 | DOI | MR | Zbl
[8] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Properties of a Subclass of Avakumovic Functions and Their Generalized Inverses”, Ukr. Math. Jour., 54:2 (2002), 179–206 | DOI | MR | Zbl
[9] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “On some extensions of Karamata's theory and their applications”, Publ. Inst. Math. Nouv. Ser., 80(94) (2006), 59–96 | DOI | MR | Zbl
[10] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 33–53
[11] E. Seneta, Regularly varying functions, Lect. Notes Math., 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl
[12] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[13] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969; M.A. Naimark, Linear differential operators, v. I, Frederick Ungar Publishing Co., New York, 1967 ; v. II, 1968 | MR | Zbl | Zbl
[14] M.V. Keldysh, “On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations”, Doklady AN SSSR, 77:1 (1951), 11–14 (in Russian) | Zbl
[15] A.A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russ. Math. Surveys, 71:5 (2016), 907–964 | DOI | DOI | MR | Zbl
[16] N. Dunford, J.T. Schwartz, Linear operators, v. II, Spectral theory. Self-adjoint operators in Hilbert space, Interscience Publ., New York, 1963 | MR | Zbl
[17] A.S. Markus, V.I. Matsaev, “Comparison theorems for spectra of linear operators and spectral asymptotics”, Trudy Mosk. Mat. Obschestva, 45, 1982, 133–181 | Zbl
[18] Davies E. B., “Non-self-adjoint differential operators”, Bull. London Math. Soc., 34:5 (2002), 513–532 | DOI | MR | Zbl
[19] Kh.K. Ishkin, “A localization criterion for the eigenvalues of a spectrally unstable operator”, Dokl. Math., 80:3 (2009), 829–832 | DOI | MR | Zbl
[20] Kh.K. Ishkin, “On the spectral instability of the Sturm-Liouville operator with a complex potential”, Diff. Eqs., 45:4 (2009), 494–509 | DOI | MR | Zbl
[21] Kh.K. Ishkin, “Conditions for localization of the limit spectrum of a model operator associated with the Orr-Sommerfeld equation”, Doklady Math., 86:1 (2012), 549–552 | DOI | MR | Zbl
[22] Kh.K. Ishkin, “On analytic properties of Weyl function of Sturm-Liouville operator with a decaying complex potential”, Ufa Math. J., 5:1 (2013), 36–55 | DOI | MR
[23] Kh.K. Ishkin, “A localization criterion for the spectrum of the Sturm-Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63 | DOI | MR | Zbl
[24] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl
[25] V.I. Matsaev, Yu.A. Palant, “On distribution of spectrum of polynomial operator pencil”, Doklady AN Armyan. SSR, 17:5 (1966), 257–261 (in Russian)
[26] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Some properties of asymptotic quasi-inverse functions and their applications I”, Theor. Probability and Math. Statist., 70 (2005), 11–28 | DOI | MR | Zbl
[27] Kh.K. Ishkin, “Conditions of spectrum localization for operators not close to self-adjoint operators”, Dokl. Math., 97:2 (2018), 170–173 | DOI | DOI | MR | Zbl
[28] Kh.K. Ishkin, “Necessary conditions for the localization of the spectrum of the Sturm-Liouville problem on a curve”, Math. Notes, 78:1 (2005), 64–75 | DOI | DOI | MR | Zbl
[29] Kh.K. Ishkin, “On a trivial monodromy criterion for the Sturm-Liouville equation”, Math. Notes, 94:4 (2013), 508–523 | DOI | DOI | MR | Zbl
[30] I.I. Privalov, Boundary properties of analytic functions, GITTL, M.–L., 1950 (in Russian) | MR