Equivalence criterion for two asymptotic formulae
Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 30-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the equivalence conditions of two asymptotic formulae for an arbitrary non-decreasing unbounded sequence $ \{\lambda_n \} $. We show that if $g$ is a non-decreasing and unbounded at infinity function, $\{f_n\}$ is a non-decreasing sequence asymptotically inverse to the function $g$, then for each sequence of real numbers $\lambda_n$ satisfying an asymptotic estimate $\lambda_n\sim f_n$, $n\to+\infty,$ the estimate $N(\lambda)\sim g(\lambda)$, $ \lambda\to+\infty$, holds if and only if $g$ is a pseudo-regularly varying function (PRV-function). We find a necessary and sufficient condition for the non-decreasing sequence $\{f_n\}$ and the function $g$, under which the second formula implies the first one. Employing this criterion, we find a non-trivial class of perturbations preserving the asymptotics of the spectrum of an arbitrary closed densely defined in a separable Hilbert space operator possessing at least one ray of the best decay of the resolvent. This result is the first generalization of the a known Keldysh theorem to the case of operators not close to self-adjoint or normal, whose spectra can strongly vary under small perturbations. We also obtain sufficient conditions for a potential ensuring that the spectrum of the Strum-Liouville operator on a curve has the same asymptotics as for the potential with finitely many poles in a convex hull of the curve obeying the trivial monodromy condition. These sufficient conditions are close to necessary ones.
Keywords: asymptotic equivalence, functions preserving equivalence, pseudo-regularly varying (PRV) functions, non-self-adjoint operators, Keldysh theorem, spectrum localization, potentials with trivial monodromy.
@article{UFA_2020_12_1_a2,
     author = {Kh. K. Ishkin and R. I. Marvanov},
     title = {Equivalence criterion for two asymptotic formulae},
     journal = {Ufa mathematical journal},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
AU  - R. I. Marvanov
TI  - Equivalence criterion for two asymptotic formulae
JO  - Ufa mathematical journal
PY  - 2020
SP  - 30
EP  - 42
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/
LA  - en
ID  - UFA_2020_12_1_a2
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%A R. I. Marvanov
%T Equivalence criterion for two asymptotic formulae
%J Ufa mathematical journal
%D 2020
%P 30-42
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/
%G en
%F UFA_2020_12_1_a2
Kh. K. Ishkin; R. I. Marvanov. Equivalence criterion for two asymptotic formulae. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/