Equivalence criterion for two asymptotic formulae
Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 30-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the equivalence conditions of two asymptotic formulae for an arbitrary non-decreasing unbounded sequence $ \{\lambda_n \} $. We show that if $g$ is a non-decreasing and unbounded at infinity function, $\{f_n\}$ is a non-decreasing sequence asymptotically inverse to the function $g$, then for each sequence of real numbers $\lambda_n$ satisfying an asymptotic estimate $\lambda_n\sim f_n$, $n\to+\infty,$ the estimate $N(\lambda)\sim g(\lambda)$, $ \lambda\to+\infty$, holds if and only if $g$ is a pseudo-regularly varying function (PRV-function). We find a necessary and sufficient condition for the non-decreasing sequence $\{f_n\}$ and the function $g$, under which the second formula implies the first one. Employing this criterion, we find a non-trivial class of perturbations preserving the asymptotics of the spectrum of an arbitrary closed densely defined in a separable Hilbert space operator possessing at least one ray of the best decay of the resolvent. This result is the first generalization of the a known Keldysh theorem to the case of operators not close to self-adjoint or normal, whose spectra can strongly vary under small perturbations. We also obtain sufficient conditions for a potential ensuring that the spectrum of the Strum-Liouville operator on a curve has the same asymptotics as for the potential with finitely many poles in a convex hull of the curve obeying the trivial monodromy condition. These sufficient conditions are close to necessary ones.
Keywords: asymptotic equivalence, functions preserving equivalence, pseudo-regularly varying (PRV) functions, non-self-adjoint operators, Keldysh theorem, spectrum localization, potentials with trivial monodromy.
@article{UFA_2020_12_1_a2,
     author = {Kh. K. Ishkin and R. I. Marvanov},
     title = {Equivalence criterion for two asymptotic formulae},
     journal = {Ufa mathematical journal},
     pages = {30--42},
     year = {2020},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
AU  - R. I. Marvanov
TI  - Equivalence criterion for two asymptotic formulae
JO  - Ufa mathematical journal
PY  - 2020
SP  - 30
EP  - 42
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/
LA  - en
ID  - UFA_2020_12_1_a2
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%A R. I. Marvanov
%T Equivalence criterion for two asymptotic formulae
%J Ufa mathematical journal
%D 2020
%P 30-42
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/
%G en
%F UFA_2020_12_1_a2
Kh. K. Ishkin; R. I. Marvanov. Equivalence criterion for two asymptotic formulae. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a2/

[1] G.V. Rozenblum, M.Z. Solomyak, M.A. Shubin, “Spectral theory of differential operators”, Partial differential equations-7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 64, 1989, 5–242 (in Russian)

[2] V.A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser Verlag, Basel, 1986 | MR | MR | Zbl

[3] M. Reed, B. Simon, Methods of modern mathematical physics, v. 4, Academic Press, New York, 1978 | MR | Zbl

[4] L. Hörmander, The analysis of linear partial differential operators, v. III, Pseudo-differential operators, Springer-Verlag, Berlin, 1985 | MR

[5] D.G. Vasil'ev, “Asymptotics of the spectrum of a boundary value problem”, Trudy Mosk. Mat. Obschestva, 49 (1986), 167–237 (in Russian) | Zbl

[6] H. Weyl, “Das Asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Mathematische Annalen, 71:4 (1912), 441–479 | DOI | MR | Zbl

[7] Kac M., Can One Hear the Shape of a Drum?, The American Mathematical Monthly, 73:4 (1966), 1–23 | DOI | MR | Zbl

[8] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Properties of a Subclass of Avakumovic Functions and Their Generalized Inverses”, Ukr. Math. Jour., 54:2 (2002), 179–206 | DOI | MR | Zbl

[9] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “On some extensions of Karamata's theory and their applications”, Publ. Inst. Math. Nouv. Ser., 80(94) (2006), 59–96 | DOI | MR | Zbl

[10] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 33–53

[11] E. Seneta, Regularly varying functions, Lect. Notes Math., 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[12] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[13] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969; M.A. Naimark, Linear differential operators, v. I, Frederick Ungar Publishing Co., New York, 1967 ; v. II, 1968 | MR | Zbl | Zbl

[14] M.V. Keldysh, “On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations”, Doklady AN SSSR, 77:1 (1951), 11–14 (in Russian) | Zbl

[15] A.A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russ. Math. Surveys, 71:5 (2016), 907–964 | DOI | DOI | MR | Zbl

[16] N. Dunford, J.T. Schwartz, Linear operators, v. II, Spectral theory. Self-adjoint operators in Hilbert space, Interscience Publ., New York, 1963 | MR | Zbl

[17] A.S. Markus, V.I. Matsaev, “Comparison theorems for spectra of linear operators and spectral asymptotics”, Trudy Mosk. Mat. Obschestva, 45, 1982, 133–181 | Zbl

[18] Davies E. B., “Non-self-adjoint differential operators”, Bull. London Math. Soc., 34:5 (2002), 513–532 | DOI | MR | Zbl

[19] Kh.K. Ishkin, “A localization criterion for the eigenvalues of a spectrally unstable operator”, Dokl. Math., 80:3 (2009), 829–832 | DOI | MR | Zbl

[20] Kh.K. Ishkin, “On the spectral instability of the Sturm-Liouville operator with a complex potential”, Diff. Eqs., 45:4 (2009), 494–509 | DOI | MR | Zbl

[21] Kh.K. Ishkin, “Conditions for localization of the limit spectrum of a model operator associated with the Orr-Sommerfeld equation”, Doklady Math., 86:1 (2012), 549–552 | DOI | MR | Zbl

[22] Kh.K. Ishkin, “On analytic properties of Weyl function of Sturm-Liouville operator with a decaying complex potential”, Ufa Math. J., 5:1 (2013), 36–55 | DOI | MR

[23] Kh.K. Ishkin, “A localization criterion for the spectrum of the Sturm-Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63 | DOI | MR | Zbl

[24] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl

[25] V.I. Matsaev, Yu.A. Palant, “On distribution of spectrum of polynomial operator pencil”, Doklady AN Armyan. SSR, 17:5 (1966), 257–261 (in Russian)

[26] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Some properties of asymptotic quasi-inverse functions and their applications I”, Theor. Probability and Math. Statist., 70 (2005), 11–28 | DOI | MR | Zbl

[27] Kh.K. Ishkin, “Conditions of spectrum localization for operators not close to self-adjoint operators”, Dokl. Math., 97:2 (2018), 170–173 | DOI | DOI | MR | Zbl

[28] Kh.K. Ishkin, “Necessary conditions for the localization of the spectrum of the Sturm-Liouville problem on a curve”, Math. Notes, 78:1 (2005), 64–75 | DOI | DOI | MR | Zbl

[29] Kh.K. Ishkin, “On a trivial monodromy criterion for the Sturm-Liouville equation”, Math. Notes, 94:4 (2013), 508–523 | DOI | DOI | MR | Zbl

[30] I.I. Privalov, Boundary properties of analytic functions, GITTL, M.–L., 1950 (in Russian) | MR