@article{UFA_2020_12_1_a1,
author = {S. A. Iskhokov and B. A. Rakhmonov},
title = {Solvability and smoothness of solution to variational {Dirichlet} problem in entire space associated with a non-coercive form},
journal = {Ufa mathematical journal},
pages = {13--29},
year = {2020},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a1/}
}
TY - JOUR AU - S. A. Iskhokov AU - B. A. Rakhmonov TI - Solvability and smoothness of solution to variational Dirichlet problem in entire space associated with a non-coercive form JO - Ufa mathematical journal PY - 2020 SP - 13 EP - 29 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a1/ LA - en ID - UFA_2020_12_1_a1 ER -
%0 Journal Article %A S. A. Iskhokov %A B. A. Rakhmonov %T Solvability and smoothness of solution to variational Dirichlet problem in entire space associated with a non-coercive form %J Ufa mathematical journal %D 2020 %P 13-29 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a1/ %G en %F UFA_2020_12_1_a1
S. A. Iskhokov; B. A. Rakhmonov. Solvability and smoothness of solution to variational Dirichlet problem in entire space associated with a non-coercive form. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a1/
[1] S.M. Nikol'skiĭ, P.I. Lizorkin, N.V. Miroshin, “Weighted function spaces and their applications to the investigation of boundary value problems for degenerate elliptic equations”, Soviet Math. Izv. VUZ. Matem., 32:8 (1988), 1–40 | MR | Zbl
[2] N.V. Miroshin, “Spectral exterior problems for a degenerate elliptic operator”, Soviet Math. Izv. VUZ, 32:8 (1988), 64–74 | MR | Zbl
[3] N.V. Miroshin, “The exterior Dirichlet variational problem for an elliptic operator with degeneration”, Proc. Steklov Inst. Math., 194 (1993), 187–205 | MR | Zbl
[4] S.A. Iskhokov, “On the smoothness of the solution of degenerate differential equations”, Diff. Equat., 31:4 (1995), 594–606 | MR | Zbl
[5] S.A. Iskhokov, A.Ya. Kudzhmuratov, “On the variational Dirichlet problem for degenerate elliptic operators”, Doklady Math., 72:1 (2005), 512–515 | MR | MR | Zbl
[6] S.A. Iskhokov, “Gårding's inequality for elliptic operators with degeneracy”, Math. Notes, 87:2 (2010), 189–203 | DOI | DOI | MR | Zbl
[7] S.A. Iskhokov, M.G. Gadoev, I.A. Yakushev, “Gårding inequality for higher order elliptic operators with a non-power degeneration and its applications”, Ufa Math. J., 8:1 (2016), 51–67 | DOI | MR | Zbl
[8] S.A. Iskhokov, O.A. Nematulloev, “On solvability of variational Dirichlet problem with inhomogeneous boundary conditions for degenerate elliptic operators in bounded domain”, Doklady AN Resp. Tajikistan, 56:5 (2013), 352–358 (in Russian)
[9] K.Kh. Boimatov, “The generalized Dirichlet problem for systems of second-order differential equations”, Doklady Math., 46:3 (1993), 403–409 | MR | MR
[10] K.Kh. Bojmatov, “The generalized Dirichlet problem connected with a noncoercive bilinear form”, Russ. Acad. Sci. Doklady Math., 330:3 (1993), 455–463 | MR | Zbl
[11] K.Kh. Boimatov, “Matrix differential operators generated by noncoercive bilinear forms”, Doklady Math., 50:3 (1995), 351–359 | MR | Zbl
[12] K.Kh.Boimatov, S.A. Iskhokov, “On solvability and smoothness of a solution of the variational Dirichlet problem associated with a noncoercive bilinear form”, Proc. Steklov Inst. Math., 214 (1996), 101–127 | MR | Zbl
[13] S.A. Iskhokov, “The variational Dirichlet problem for elliptic operators with nonpower degeneration generated by noncoercive bilinear forms”, Doklady Math., 68:2 (2003), 261–265 | MR | MR | Zbl
[14] S.A. Iskhokov, A.G. Karimov, “On smoothness of solution of variational Dirichlet problem for elliptic operators associated with non-coercive bilinear forms”, Doklady AN Resp. Tajikistan, 47:4 (2004), 68–74 (in Russian)
[15] K.Kh. Boimatov, “On the Abel basis property of the system of root vector-functions of degenerate elliptic differential operators with singular matrix coefficients”, Siberian Math. J., 47:1 (2006), 35–44 | DOI | MR | Zbl
[16] S.A. Iskhokov, M.G. Gadoev, T. Konstantinova, “Variational Dirichlet problem for degenerate elliptic operators generated by noncoercive forms”, Doklady Math., 91:3 (2015), 255–258 | DOI | DOI | MR | MR | Zbl
[17] M.G. Gadoev, T.P. Konstantinova, “Solvability of the Dirichlet variational problem for a class of degenerate elliptic operators”, Yak. Math. J., 21:2 (2014), 6–18 | Zbl
[18] S.A. Iskhokov, M.G. Gadoev, M.N. Petrova, “On some spectral properties of a class of degenerate elliptic differential operators”, Matem. Zamet. SVFU, 23:2 (2016), 31–50 (in Russian) | Zbl
[19] K.Kh. Boimatov, “On the denseness of the compactly supported functions in weighted spaces”, Soviet Math. Dokl., 40:6 (1990), 225–228 | MR | MR
[20] S.A. Iskhokov, “On the smoothness of a generalized solution of the Dirichlet variational problem for degenerate elliptic equations in a half-space”, Doklady Math., 47:3 (1993), 504–508 | MR | Zbl
[21] L.D. Kudryavtsev, “Imbedding theorems for functions defined on unbounded regions”, Sov. Math. Dokl., 4 (1963), 1715–1717 | Zbl
[22] T.S. Pigolkina, “Density of finite functions in weight classes”, Math. Notes, 2:1 (1967), 518–522 | DOI | MR | Zbl
[23] Yu.M. Berezansky, Expansion over eigenfunctions of self-adjoint operators, Naukova Dumka, Kiev, 1965 (in Russian)
[24] K.Kh. Boimatov, “The spectral asymptotics of differential and pseudo-differential operators. I”, Tr. Semin. Im. I. G. Petrovskogo, 7 (1981), 50–100 (in Russian) | Zbl
[25] K.Kh. Boimatov, “Separability theorems, weighted spaces and their applications”, Proc. Steklov Inst. Math., 170 (1987), 39–81 | MR
[26] M.Sh. Birman, M.Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, D. Reidel Publ. Comp., Dordrecht, 1987 | MR
[27] T. Kato, Perturbation theory of linear operators, Springer-Verlag, Berlin, 1967 | MR
[28] S.A. Iskhokov, “On the smoothness of solutions of the generalized Dirichlet problem and the eigenvalue problem for differential operators generated by noncoercive bilinear forms”, Doklady Math., 51:3 (1995), 323–325 | MR | MR | Zbl