Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, via the decomposition of Littlewood–Paley, the homogeneous Triebel-Lizorkin space $\dot{F}_{\infty,q}^{s}$ is defined on $\mathbb{R}^n$ by distributions modulo polynomials in the sense that $\|f\|=0$ ($\|\cdot\|$ the quasi-seminorm in $\dot F^{s}_{\infty,q}$) if and only if $f$ is a polynomial on $\mathbb{R}^n$. We consider this space as a set of “true” distributions and we are lead to examine the convergence of the Littlewood-Paley sequence of each element in $\dot F^{s}_{\infty,q}$. First we use the realizations and then we obtain the realized space $\dot{\widetilde{F}}{^{s}_{\infty,q}}$ of $\dot{F}_{\infty,q}^{s}$. Our approach is as follows. We first study the commuting translations and dilations of realizations in $\dot{F}_{\infty,q}^{s}$, and employing distributions vanishing at infinity in the weak sense, we construct $\dot{\widetilde{F}}{^{s}_{\infty,q}}$. Then, as another possible definition of $\dot{F}_{\infty,q}^{s}$, in the case $s>0$, we make use of the differences and describe $\dot{\widetilde{F}}{^{s}_{\infty,q}}$ as $s>\max(n/q-n,0)$.
Keywords: Triebel–Lizorkin spaces, Littlewood–Paley decomposition, realizations.
@article{UFA_2019_11_4_a9,
     author = {M. Benallia and M. Moussai},
     title = {Realization of homogeneous {Triebel--Lizorkin} spaces with $p=\infty $ and characterizations via differences},
     journal = {Ufa mathematical journal},
     pages = {115--130},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/}
}
TY  - JOUR
AU  - M. Benallia
AU  - M. Moussai
TI  - Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences
JO  - Ufa mathematical journal
PY  - 2019
SP  - 115
EP  - 130
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/
LA  - en
ID  - UFA_2019_11_4_a9
ER  - 
%0 Journal Article
%A M. Benallia
%A M. Moussai
%T Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences
%J Ufa mathematical journal
%D 2019
%P 115-130
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/
%G en
%F UFA_2019_11_4_a9
M. Benallia; M. Moussai. Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/