Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, via the decomposition of Littlewood–Paley, the homogeneous Triebel-Lizorkin space $\dot{F}_{\infty,q}^{s}$ is defined on $\mathbb{R}^n$ by distributions modulo polynomials in the sense that $\|f\|=0$ ($\|\cdot\|$ the quasi-seminorm in $\dot F^{s}_{\infty,q}$) if and only if $f$ is a polynomial on $\mathbb{R}^n$. We consider this space as a set of “true” distributions and we are lead to examine the convergence of the Littlewood-Paley sequence of each element in $\dot F^{s}_{\infty,q}$. First we use the realizations and then we obtain the realized space $\dot{\widetilde{F}}{^{s}_{\infty,q}}$ of $\dot{F}_{\infty,q}^{s}$. Our approach is as follows. We first study the commuting translations and dilations of realizations in $\dot{F}_{\infty,q}^{s}$, and employing distributions vanishing at infinity in the weak sense, we construct $\dot{\widetilde{F}}{^{s}_{\infty,q}}$. Then, as another possible definition of $\dot{F}_{\infty,q}^{s}$, in the case $s>0$, we make use of the differences and describe $\dot{\widetilde{F}}{^{s}_{\infty,q}}$ as $s>\max(n/q-n,0)$.
Keywords: Triebel–Lizorkin spaces, Littlewood–Paley decomposition, realizations.
@article{UFA_2019_11_4_a9,
     author = {M. Benallia and M. Moussai},
     title = {Realization of homogeneous {Triebel{\textendash}Lizorkin} spaces with $p=\infty $ and characterizations via differences},
     journal = {Ufa mathematical journal},
     pages = {115--130},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/}
}
TY  - JOUR
AU  - M. Benallia
AU  - M. Moussai
TI  - Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences
JO  - Ufa mathematical journal
PY  - 2019
SP  - 115
EP  - 130
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/
LA  - en
ID  - UFA_2019_11_4_a9
ER  - 
%0 Journal Article
%A M. Benallia
%A M. Moussai
%T Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences
%J Ufa mathematical journal
%D 2019
%P 115-130
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/
%G en
%F UFA_2019_11_4_a9
M. Benallia; M. Moussai. Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/

[1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, Berlin, 2011 | MR

[2] S. Bissar, M. Moussai, “Pointwise multiplication in the realized homogeneous Besov and Triebel-Lizorkin spaces”, Probl. Anal. Issues Anal., 7(25):1 (2018), 3–22 | MR | Zbl

[3] G. Bourdaud, “Réalisations des espaces de Besov homogènes”, Ark. Matem., 26:1 (1988), 41–54 | DOI | MR | Zbl

[4] G. Bourdaud, Ce qu'il faut savoir sur les espaces de Besov, Prépub. Univ. Paris 7 URA 212,53, 1993 ; 2nd eddition, in preparation, Paris, 2009 (in French) | MR

[5] G. Bourdaud, “Superposition in homogeneous and vector valued Sobolev spaces”, Trans. Amer. Math. Soc., 362:11 (2010), 6105–6130 | DOI | MR | Zbl

[6] G. Bourdaud, “Realizations of homogeneous Sobolev spaces”, Compl. Var. Ellip. Equat., 56:10–11 (2011), 857–874 | DOI | MR | Zbl

[7] G. Bourdaud, “Realizations of homogeneous Besov and Lizorkin-Triebel spaces”, Math. Nachr., 286:5–6 (2013), 476–491 | DOI | MR | Zbl

[8] G. Bourdaud, Y. Meyer, “Le calcul fonctionnel sous-linéaire dans les espaces de Besov homogènes”, Rev. Mat. Iberoamericana, 22:2 (2006), 725–746 | DOI | MR | Zbl

[9] L. Brandolese, “Application of the realization of homogeneous Sobolev spaces to Navier-Stokes”, SIAM J. Math. Anal., 37:2 (2005), 673–683 | DOI | MR | Zbl

[10] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:1 (1972), 137–193 | DOI | MR | Zbl

[11] M. Frazier, B. Jawerth, “Decomposition of Besov spaces”, Indiana Univ. Math. J., 34:4 (1985), 777–799 | DOI | MR | Zbl

[12] M. Frazier, B. Jawerth, “A discrete transform and decomposition of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl

[13] L. Hörmander, Linear partial differential operators, Grundl. Math. Wiss., 116, Springer, Berlin, 1963 | MR | Zbl

[14] B. Jawerth, “Some observations on Besov and Lizorkin-Triebel spaces”, Math. Scand., 40:1 (1977), 94–104 | DOI | MR | Zbl

[15] S. Meliani, M. Moussai, “Boundedness of pseudodifferential operators on realized homogeneous Besov spaces”, Taiwanese J. Math., 21:2 (2017), 441–465 | DOI | MR | Zbl

[16] M. Moussai, “Realizations of homogeneous Besov and Triebel-Lizorkin spaces and an application to pointwise multipliers”, Anal. Appl. (Singap.), 13:2 (2015), 149–183 | DOI | MR | Zbl

[17] M. Moussai, “Composition operators on Besov spaces in the limiting case $s=1+1/p$”, Studia Math., 241:1 (2018), 1–15 | DOI | MR | Zbl

[18] M. Moussai, “Characterization of homogeneous Besov and Triebel-Lizorkin spaces via differences”, Appl. Math. J. Chinese Univ., 33:2 (2018), 188–208 | DOI | MR | Zbl

[19] H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[20] B. Vedel, “Flat wavelet bases adapted to the homogeneous Sobolev spaces”, Math. Nachr., 282:1 (2009), 104–124 | DOI | MR | Zbl

[21] A. Youssfi, “Localisation des espaces de Lizorkin-Triebel homogènes”, Math. Nachr., 147:1 (1990), 107–121 | DOI | MR | Zbl

[22] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Springer, Heidelberg, 2010 | MR | Zbl