@article{UFA_2019_11_4_a9,
author = {M. Benallia and M. Moussai},
title = {Realization of homogeneous {Triebel{\textendash}Lizorkin} spaces with $p=\infty $ and characterizations via differences},
journal = {Ufa mathematical journal},
pages = {115--130},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/}
}
TY - JOUR AU - M. Benallia AU - M. Moussai TI - Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences JO - Ufa mathematical journal PY - 2019 SP - 115 EP - 130 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/ LA - en ID - UFA_2019_11_4_a9 ER -
M. Benallia; M. Moussai. Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/
[1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, Berlin, 2011 | MR
[2] S. Bissar, M. Moussai, “Pointwise multiplication in the realized homogeneous Besov and Triebel-Lizorkin spaces”, Probl. Anal. Issues Anal., 7(25):1 (2018), 3–22 | MR | Zbl
[3] G. Bourdaud, “Réalisations des espaces de Besov homogènes”, Ark. Matem., 26:1 (1988), 41–54 | DOI | MR | Zbl
[4] G. Bourdaud, Ce qu'il faut savoir sur les espaces de Besov, Prépub. Univ. Paris 7 URA 212,53, 1993 ; 2nd eddition, in preparation, Paris, 2009 (in French) | MR
[5] G. Bourdaud, “Superposition in homogeneous and vector valued Sobolev spaces”, Trans. Amer. Math. Soc., 362:11 (2010), 6105–6130 | DOI | MR | Zbl
[6] G. Bourdaud, “Realizations of homogeneous Sobolev spaces”, Compl. Var. Ellip. Equat., 56:10–11 (2011), 857–874 | DOI | MR | Zbl
[7] G. Bourdaud, “Realizations of homogeneous Besov and Lizorkin-Triebel spaces”, Math. Nachr., 286:5–6 (2013), 476–491 | DOI | MR | Zbl
[8] G. Bourdaud, Y. Meyer, “Le calcul fonctionnel sous-linéaire dans les espaces de Besov homogènes”, Rev. Mat. Iberoamericana, 22:2 (2006), 725–746 | DOI | MR | Zbl
[9] L. Brandolese, “Application of the realization of homogeneous Sobolev spaces to Navier-Stokes”, SIAM J. Math. Anal., 37:2 (2005), 673–683 | DOI | MR | Zbl
[10] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:1 (1972), 137–193 | DOI | MR | Zbl
[11] M. Frazier, B. Jawerth, “Decomposition of Besov spaces”, Indiana Univ. Math. J., 34:4 (1985), 777–799 | DOI | MR | Zbl
[12] M. Frazier, B. Jawerth, “A discrete transform and decomposition of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl
[13] L. Hörmander, Linear partial differential operators, Grundl. Math. Wiss., 116, Springer, Berlin, 1963 | MR | Zbl
[14] B. Jawerth, “Some observations on Besov and Lizorkin-Triebel spaces”, Math. Scand., 40:1 (1977), 94–104 | DOI | MR | Zbl
[15] S. Meliani, M. Moussai, “Boundedness of pseudodifferential operators on realized homogeneous Besov spaces”, Taiwanese J. Math., 21:2 (2017), 441–465 | DOI | MR | Zbl
[16] M. Moussai, “Realizations of homogeneous Besov and Triebel-Lizorkin spaces and an application to pointwise multipliers”, Anal. Appl. (Singap.), 13:2 (2015), 149–183 | DOI | MR | Zbl
[17] M. Moussai, “Composition operators on Besov spaces in the limiting case $s=1+1/p$”, Studia Math., 241:1 (2018), 1–15 | DOI | MR | Zbl
[18] M. Moussai, “Characterization of homogeneous Besov and Triebel-Lizorkin spaces via differences”, Appl. Math. J. Chinese Univ., 33:2 (2018), 188–208 | DOI | MR | Zbl
[19] H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl
[20] B. Vedel, “Flat wavelet bases adapted to the homogeneous Sobolev spaces”, Math. Nachr., 282:1 (2009), 104–124 | DOI | MR | Zbl
[21] A. Youssfi, “Localisation des espaces de Lizorkin-Triebel homogènes”, Math. Nachr., 147:1 (1990), 107–121 | DOI | MR | Zbl
[22] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Springer, Heidelberg, 2010 | MR | Zbl