Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, via the decomposition of Littlewood–Paley,
the homogeneous Triebel-Lizorkin space $\dot{F}_{\infty,q}^{s}$ is defined on $\mathbb{R}^n$ by distributions modulo polynomials in the sense that $\|f\|=0$ ($\|\cdot\|$ the quasi-seminorm in $\dot F^{s}_{\infty,q}$) if and only if $f$ is a polynomial on $\mathbb{R}^n$. We consider this space as a set of “true” distributions and we are lead to examine the convergence of the Littlewood-Paley sequence of each element in $\dot F^{s}_{\infty,q}$. First we use the realizations and then we obtain the realized space $\dot{\widetilde{F}}{^{s}_{\infty,q}}$ of $\dot{F}_{\infty,q}^{s}$.
Our approach is as follows. We first study the commuting translations and dilations of realizations in $\dot{F}_{\infty,q}^{s}$, and employing distributions vanishing at infinity in the weak sense, we construct $\dot{\widetilde{F}}{^{s}_{\infty,q}}$. Then, as
another possible definition of $\dot{F}_{\infty,q}^{s}$, in the case $s>0$, we make use of the differences and
describe $\dot{\widetilde{F}}{^{s}_{\infty,q}}$ as $s>\max(n/q-n,0)$.
Keywords:
Triebel–Lizorkin spaces, Littlewood–Paley decomposition, realizations.
@article{UFA_2019_11_4_a9, author = {M. Benallia and M. Moussai}, title = {Realization of homogeneous {Triebel--Lizorkin} spaces with $p=\infty $ and characterizations via differences}, journal = {Ufa mathematical journal}, pages = {115--130}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/} }
TY - JOUR AU - M. Benallia AU - M. Moussai TI - Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences JO - Ufa mathematical journal PY - 2019 SP - 115 EP - 130 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/ LA - en ID - UFA_2019_11_4_a9 ER -
%0 Journal Article %A M. Benallia %A M. Moussai %T Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences %J Ufa mathematical journal %D 2019 %P 115-130 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/ %G en %F UFA_2019_11_4_a9
M. Benallia; M. Moussai. Realization of homogeneous Triebel--Lizorkin spaces with $p=\infty $ and characterizations via differences. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 115-130. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a9/