On triple derivations of partially ordered sets
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 108-114
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, as a generalization of derivation on a partially ordered set, the notion of a triple derivation is presented and studied on a partially ordered set. We study some fundamental properties of the triple derivation on partially ordered sets. Moreover, some examples of triple derivations on a partially ordered set are given. Furthermore, it is shown that the image of an ideal under triple derivation is an ideal under some conditions. Also, the set of fixed points under triple derivation is an ideal under certain conditions. We establish a series of further results of the following nature. Let $(P,\leq)$ be a partially ordered set. 1. If $d,s$ are triple derivations on $P,$ then $d=s$ if and only if $\mathrm{Fix}_{d}(P)=\mathrm{Fix}_{s}(P).$ 2. If $d$ is a triple derivation on $P,$ then, for all $x \in P$;$ \mathrm{Fix}_{d}(P)\cap l(x) = l(d(x)).$ 3. If $d$ and $s$ are two triple derivations on $P,$ then $d$ and $s$ commute. 4. If $d$ and $s$ are two triple derivations on $P,$ then $d \leq s$ if and only if $sd = d.$ In the end, the properties of ideals and operations related to triple derivations are examined.
Keywords: triple derivation, fixed point, ideal, partially ordered set.
@article{UFA_2019_11_4_a8,
     author = {A. Y. Abdelwanis},
     title = {On triple derivations of partially ordered sets},
     journal = {Ufa mathematical journal},
     pages = {108--114},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a8/}
}
TY  - JOUR
AU  - A. Y. Abdelwanis
TI  - On triple derivations of partially ordered sets
JO  - Ufa mathematical journal
PY  - 2019
SP  - 108
EP  - 114
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a8/
LA  - en
ID  - UFA_2019_11_4_a8
ER  - 
%0 Journal Article
%A A. Y. Abdelwanis
%T On triple derivations of partially ordered sets
%J Ufa mathematical journal
%D 2019
%P 108-114
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a8/
%G en
%F UFA_2019_11_4_a8
A. Y. Abdelwanis. On triple derivations of partially ordered sets. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 108-114. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a8/

[1] M. Ashraf, A. Jabeen, “Nonlinear generalized Lie triple higher derivation on triangular algebras”, Bull. Iran. Math. Soc., 44:2 (2018), 513–530 | DOI | MR | Zbl

[2] M. Ashraf, B. A. Wani, F. Wei, “Multiplicative $*$-Lie triple higher derivations of standard operator algebras”, Quaestiones Mathematicae, 42:7 (2018), 857–884 | DOI | MR

[3] T. Albu, M. L. Teply, “Generalized deviation of posets and modular lattices”, Discr. Math., 214:1 (2000), 1–19 | DOI | MR | Zbl

[4] I. Chajda, J. Rachünek, “Forbidden configurations for distributive and modular ordered sets”, Order, 5:4 (1989), 407–423 | DOI | MR | Zbl

[5] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Cambridge Univ. Press, Cambidge, 2003 | MR | Zbl

[6] M. Hongan, N. U. Rehman, “A note on the generalized Jordan triple derivations on lee ideals in semiprime rings”, Sarajevo J. Math., 9:21 (2013), 29–36 | DOI | MR | Zbl

[7] W. Jing, S. Lu, “Generalized Jordan derivations on prime rings and standared operator algebras”, Taiwanese J. Math., 7:4 (2003), 605–613 | DOI | MR | Zbl

[8] Y. S. Jung, “Generalized Jordan higher triple derivations on prime rings”, Indian J. Pure Appl. Math., 36:9 (2005), 513–524 | MR | Zbl

[9] C. K. Liu, K. W. Shiue, “Generalized Jordan triple $(\theta,\phi)$-derivations on semiprime rings”, Taiwanese J. Math., 11:5 (2007), 1397–1406 | DOI | MR | Zbl

[10] Z. Ullah, I. Javaid, M. A. Chaudhry, “On generalized triple derivations on lattices”, ARS Combinatoria, 113 (2014), 463–471 | MR | Zbl

[11] X. L. Xin, T. Y. Li, J. H. Lu, “On derivations of lattices”, Information Sci., 178:2 (2008), 307–316 | DOI | MR | Zbl

[12] H. Zhang, Q. Li, “On derivations of partially ordered sets”, Math. Slovaca, 67:1 (2017), 17–22 | MR | Zbl