Mots-clés : continuation formulae.
@article{UFA_2019_11_4_a7,
author = {A. B. Khasanov and F. R. Tursunov},
title = {On {Cauchy} problem for {Laplace} equation},
journal = {Ufa mathematical journal},
pages = {91--107},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a7/}
}
A. B. Khasanov; F. R. Tursunov. On Cauchy problem for Laplace equation. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 91-107. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a7/
[1] L. A. Aĭzenberg, Carleman formulas in complex analysis. First applications, Nauka, Novosibirsk, 1990 | MR
[2] T. Carleman, Les Functions quasi analytiques, Paris, 1926, 116 pp.
[3] G. M. Goluzin, V. I. Krylov, “Generalized Carleman formula and its application to analytic continuation of functions”, Matem. Sborn., 40:2 (1933), 144–149 (in Russian) | Zbl
[4] A. N. Tikhonov, “On stability of inverse problems”, Dokl. AN SSSR, 39:5 (1943), 195–198 (in Russian)
[5] N. N. Tarkhanov, “On the integral representation for solutions of systems of linear first order partial differential equations and some of its applications”, Some questions of multidimensional complex analysis, Institut Fiziki SO AN SSSR, Krasnoyarsk, 1980, 147–160 (in Russian) | Zbl
[6] M. M. Lavrent'ev, “On the Cauchy problem for Laplace equation”, Izv. RAN. Ser. Matem., 20:6 (1956), 819–842 (in Russian) | Zbl
[7] M. M. Lavrent'ev, Some improperly posed problems of mathematical physics, Springer Tracts in Natural Philosophy, 11, Springer-Verlag, Berlin, 1967 | DOI | Zbl
[8] Sh. Yarmukhamedov, “On harmonic continuation of differentiable functions defined on a part of the boundary”, Siber. Math. J., 43:1 (2002), 183–193 | DOI | MR | Zbl
[9] Sh. Yarmukhamedov, “Representation of harmonic functions as potentials and the Cauchy problem”, Math. Notes, 83:5 (2008), 693–706 | DOI | DOI | MR | Zbl
[10] S. I. Kabanikhin, Inverse and ill-posed problems. Theory and applications, de Gruyter, Berlin, 2012 | MR | Zbl