Mots-clés : Legendre polynomial
@article{UFA_2019_11_4_a5,
author = {D. F. Kuznetsov},
title = {Expansion of iterated {Stratonovich} stochastic integrals based on generalized multiple {Fourier} series},
journal = {Ufa mathematical journal},
pages = {49--77},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a5/}
}
D. F. Kuznetsov. Expansion of iterated Stratonovich stochastic integrals based on generalized multiple Fourier series. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 49-77. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a5/
[1] I. I. Gikhman, A. V. Skorokhod, The theory of stochastic processes, Classics in Mathematics, Springer, Berlin, 2004 | DOI | MR | MR
[2] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, Berlin, 1992 | MR | Zbl
[3] G. N. Milstein, Numerical integration of stochastic differential equations, Mathematics and its Applications, 313, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl
[4] G. N. Milstein, M. V. Tretyakov, Stochastic numerics for mathematical physics, Springer-Verlag, Berlin, 2004 | MR | Zbl
[5] E. Platen, W. Wagner, “On a Taylor formula for a class of Itô processes”, Probab. Math. Statist., 3:1 (1982), 37–51 | MR | Zbl
[6] P. E. Kloeden, E. Platen, “The Stratonovich and Itô-Taylor expansions”, Math. Nachr., 151:1 (1991), 33–50 | DOI | MR | Zbl
[7] O. Yu. Kulchitski, D. F. Kuznetsov, “The unified Taylor-Itô expansion”, J. Math. Sci., 99:2 (2000), 1130–1140 | DOI | MR
[8] D. F. Kuznetsov, “New representations of the Taylor-Stratonovich expansion”, J. Math. Sci., 118:6 (2003), 5586–5596 | DOI | MR | Zbl
[9] D. F. Kuznetsov, Numerical integration of stochastic differential equations, v. 2, Polytech. Univ. Publ., St. Petersburg, 2006 (in Russian)
[10] P. E. Kloeden, E. Platen, I. W. Wright, “The approximation of multiple stochastic integrals”, Stoch. Anal. Appl., 10:4 (1992), 431–441 | DOI | MR | Zbl
[11] D. F. Kuznetsov, “New representations of explicit one-step numerical methods for jump-diffusion stochastic differential equations”, Comp. Math. Math. Phys., 41:6 (2001), 874–888 | MR | Zbl
[12] E. W. Hobson, The theory of spherical and ellipsoidal harmonics, Cambridge Univ. Press, Cambridge, 1931 | MR
[13] V. A. Il'in, E. G. Poznyak, Foundations of mathematical analysis, v. II, Nauka, M., 1973 (in Russian)
[14] P. K. Suetin, Classical orthogonal polynomials, Fizmatlit, M., 2005 (in Russian)