@article{UFA_2019_11_4_a4,
author = {D. S. Klimentov},
title = {Stochastic analogue of fundamental theorem of surface theory for surfaces of bounded distortion and positive curvature},
journal = {Ufa mathematical journal},
pages = {40--48},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a4/}
}
TY - JOUR AU - D. S. Klimentov TI - Stochastic analogue of fundamental theorem of surface theory for surfaces of bounded distortion and positive curvature JO - Ufa mathematical journal PY - 2019 SP - 40 EP - 48 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a4/ LA - en ID - UFA_2019_11_4_a4 ER -
D. S. Klimentov. Stochastic analogue of fundamental theorem of surface theory for surfaces of bounded distortion and positive curvature. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 40-48. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a4/
[1] D.S. Klimentov, “Stochastic analogue of fundamental theorem of surface theory for surfaces of positive curvature”, Izvestia VUZov. Severo-Kavkazskii region. Estest. nauki, 2013, no. 6, 24–27 (in Russian)
[2] D.S. Klimentov, “Stochastic analogue of fundamental theorem of surface theory for surfaces of non-zero mean curvature”, Izvestia VUZov. Severo-Kavkazskii region. Estest. nauki, 2014, no. 1, 15–18 (in Russian)
[3] P.K. Rashevsky, Course of differential geometry, GONTI, M., 1939 (in Russian) | MR
[4] S. Sasaki, “A global formulation of the foundamental theorem of the theory of surfaces in three dimensional Euclidean space”, Nagoya Math. J., 13 (1958), 69–82 | DOI | MR | Zbl
[5] I. Ya. Bakelman, “Differential geometry of smooth non-regular surfaces”, Uspekhi Matem. Nauk, 11:2(68) (1956), 67–124 (in Russian) | MR | Zbl
[6] Yu.E. Borovskii, “Pfaff systems with the coefficients in $L_{n}$ and their geometric applications”, Sibir. Matem. Zhurn., 24:2 (1988), 10–16 (in Russian) | MR
[7] E.B. Dynkin, Theory of Markov processes, Dover Publications, Mineola, New York, 2006 | MR | Zbl
[8] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Publ. Co., 1981 | MR | Zbl
[9] A.D. Aleksandrov, V.A. Zalgaller, “Two-dimensional manifolds of bounded curvature”, Foundations of the intrinsic geometry of surfaces, Trudy Mat. Inst. Steklov., 63, 1962, 3–262 (in Russian)
[10] Yu. G. Reshetnyak, “Two-dimensional manifolds of bounded curvature”, Itogi Nauki Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 70, 1989, 7–189 (in Russian)
[11] M. Fukushima, Y. Oshima, M. Takeda, Dirishlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin–New York, 1994 | MR
[12] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, New-Jersey, 1970 | MR | MR | Zbl