Neumann boundary value problem for system of equations of non-equilibrium sorption
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 33-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Filtration of liquids and gases containing associated (dissolved, suspended) solids in porous media is accompanied by diffusion of these substances and mass transfer between the liquid (gas) and solid phases. In this work, we study the system of equations modeling the process of a non-equilibrium sorption. We prove an existence and uniqueness theorem for a multi-dimensional Neumann initial-boundary value problem in the Hölder classes of functions. We obtain a maximum principle, which plays an important role in the proof of the theorem. The uniqueness of the solution follows this principle. The existence of a solution to the problem is shown by Schauder fixed point theorem for a completely continuous operator; we describe a corresponding operator. We obtain estimates ensuring the complete continuity of the constructed operator and the mapping of some closed set of functions into itself over a small time interval. Then we obtain the estimates allowing us to continue the solution up to arbitrary finite time.
Keywords: modeling of process of non-equilibrium sorption, Neumann initial boundary value problem, global unique solvability.
@article{UFA_2019_11_4_a3,
     author = {I. A. Kaliev and G. S. Sabitova},
     title = {Neumann boundary value problem for system of equations of non-equilibrium sorption},
     journal = {Ufa mathematical journal},
     pages = {33--39},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a3/}
}
TY  - JOUR
AU  - I. A. Kaliev
AU  - G. S. Sabitova
TI  - Neumann boundary value problem for system of equations of non-equilibrium sorption
JO  - Ufa mathematical journal
PY  - 2019
SP  - 33
EP  - 39
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a3/
LA  - en
ID  - UFA_2019_11_4_a3
ER  - 
%0 Journal Article
%A I. A. Kaliev
%A G. S. Sabitova
%T Neumann boundary value problem for system of equations of non-equilibrium sorption
%J Ufa mathematical journal
%D 2019
%P 33-39
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a3/
%G en
%F UFA_2019_11_4_a3
I. A. Kaliev; G. S. Sabitova. Neumann boundary value problem for system of equations of non-equilibrium sorption. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 33-39. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a3/

[1] L. Lapidus, W.R. Amundson, “Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns”, J. Phys. Chem., 56:8 (1952), 984–988 | DOI

[2] K.H. Coats, B.D. Smith, “Dead and pore volume and dispersion in porous media”, Soc. Petrol. Eng. J., 4:1 (1964), 73–84 | DOI

[3] P. Ya. Polubarinova-Kochina (ed.), Development of studies on filtration theory in USSR, Nauka, M., 1969 (in Russian)

[4] I.A. Kaliev, G.S. Sabitova, “On a problem of nonequilibrium sorption”, Sibir. Zhurn. Industr. Matem., 6:1 (13) (2003), 35–39 (in Russian) | MR | Zbl

[5] I.A. Kaliev, S.T. Mukhambetzhanov, G.S. Sabitova, “Numerical modeling of the non-equilibrium sorption process”, Ufa Math. J., 8:2 (2016), 39–43 | DOI | MR

[6] I.A. Kaliev, S.T. Mukhambetzhanov, G.S. Sabitova, “Mathematical Modeling of Non-Equilibrium Sorption”, Far East Journal of Mathematical Sciences (FJMS), 99:12 (2016), 1803–1810 | DOI | Zbl

[7] S. Zaremba, “Sur un probleme toujours possible comprenant, a titre de cas particuliers, le probleme de Dirichlet et celui de Neumann”, J. Math. Pures Appl., 6 (1927), 127–163 | Zbl

[8] G. Giraud, “Generalisation des problemes sur les operations du type elliptique”, Bull. Sc. Math., 56 (1932), 248–272

[9] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monog., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl