@article{UFA_2019_11_4_a3,
author = {I. A. Kaliev and G. S. Sabitova},
title = {Neumann boundary value problem for system of equations of non-equilibrium sorption},
journal = {Ufa mathematical journal},
pages = {33--39},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a3/}
}
I. A. Kaliev; G. S. Sabitova. Neumann boundary value problem for system of equations of non-equilibrium sorption. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 33-39. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a3/
[1] L. Lapidus, W.R. Amundson, “Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns”, J. Phys. Chem., 56:8 (1952), 984–988 | DOI
[2] K.H. Coats, B.D. Smith, “Dead and pore volume and dispersion in porous media”, Soc. Petrol. Eng. J., 4:1 (1964), 73–84 | DOI
[3] P. Ya. Polubarinova-Kochina (ed.), Development of studies on filtration theory in USSR, Nauka, M., 1969 (in Russian)
[4] I.A. Kaliev, G.S. Sabitova, “On a problem of nonequilibrium sorption”, Sibir. Zhurn. Industr. Matem., 6:1 (13) (2003), 35–39 (in Russian) | MR | Zbl
[5] I.A. Kaliev, S.T. Mukhambetzhanov, G.S. Sabitova, “Numerical modeling of the non-equilibrium sorption process”, Ufa Math. J., 8:2 (2016), 39–43 | DOI | MR
[6] I.A. Kaliev, S.T. Mukhambetzhanov, G.S. Sabitova, “Mathematical Modeling of Non-Equilibrium Sorption”, Far East Journal of Mathematical Sciences (FJMS), 99:12 (2016), 1803–1810 | DOI | Zbl
[7] S. Zaremba, “Sur un probleme toujours possible comprenant, a titre de cas particuliers, le probleme de Dirichlet et celui de Neumann”, J. Math. Pures Appl., 6 (1927), 127–163 | Zbl
[8] G. Giraud, “Generalisation des problemes sur les operations du type elliptique”, Bull. Sc. Math., 56 (1932), 248–272
[9] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monog., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl