Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 151-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study some basic properties of the qualitative theory such as existence, uniqueness, and stability of solutions to the first-order of weighted Cauchy-type problem for nonlinear fractional integro-differential equation with nonlocal conditions involving a general form of Hilfer fractional derivative. The fractional integral and derivative of different orders are involved in the given problem and the classical integral is involved in nonlinear terms. We establish the equivalence between the weighted Cauchy-type problem and its mixed type integral equation by employing various tools and properties of fractional calculus in weighted spaces of continuous functions. The Krasnoselskii's fixed point theorem and the Banach fixed point theorem are used to obtain the existence and uniqueness of solutions of a given problem, and also the results of nonlinear analysis such as Arzila–Ascoli theorem and some special functions like Gamma function, Beta function, and Mittag–Leffler function serves as tools in our analysis. Further, the generalized Gronwall inequality is used to obtain the Ulam–Hyers, generalized Ulam–Hyers, Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability of solutions of the weighted Cauchy-type problem. In the end, we provide two examples demonstrating our main results.
Keywords: fractional integro-differential equations, $\psi-$Hilfer fractional derivative, existence and Ulam–Hyers stability, fixed point theorem.
Mots-clés : nonlocal conditions
@article{UFA_2019_11_4_a12,
     author = {H. A. Wahash and M. S. Abdo and S. K. Panchal},
     title = {Fractional integrodifferential equations with nonlocal conditions and generalized {Hilfer} fractional derivative},
     journal = {Ufa mathematical journal},
     pages = {151--170},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/}
}
TY  - JOUR
AU  - H. A. Wahash
AU  - M. S. Abdo
AU  - S. K. Panchal
TI  - Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative
JO  - Ufa mathematical journal
PY  - 2019
SP  - 151
EP  - 170
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/
LA  - en
ID  - UFA_2019_11_4_a12
ER  - 
%0 Journal Article
%A H. A. Wahash
%A M. S. Abdo
%A S. K. Panchal
%T Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative
%J Ufa mathematical journal
%D 2019
%P 151-170
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/
%G en
%F UFA_2019_11_4_a12
H. A. Wahash; M. S. Abdo; S. K. Panchal. Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 151-170. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/

[1] M. S. Abdo, S. K. Panchal, “Existence and continuous dependence for fractional neutral functional differential equations”, J. Math. Model., 5:2 (2017), 153–170 | MR | Zbl

[2] M. S. Abdo, S. K. Panchal, “Fractional integro-differential equations involving $\psi$-Hilfer fractional derivative”, Adv. Appl. Math. Mech., 11:2 (2019), 338–359 | DOI | MR

[3] M. S. Abdo, S. K. Panchal, A. M. Saeed, “Indian Acad”, Proc. Sci. (Math. Sci.), 129:5 (2019), 65 | DOI | MR | Zbl

[4] M. S. Abdo, S. K. Panchal, “Weighted fractional neutral functional differential equations”, J. Siber. Federal Univ. Math. Phys., 11:5 (2018), 535–549 | DOI | MR

[5] R. Agarwal, S. Hristova, D. O'Regan, “A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations”, Fract. Calc. Appl. Anal., 19:2 (2016), 290–318 | DOI | MR | Zbl

[6] R. Almeida, “A Caputo fractional derivative of a function with respect to another function”, Commun. Nonl. Sci. Numer. Simul., 44 (2017), 460–481 | DOI | MR

[7] R. Almeida, A. B. Malinowska, M. T. Monteiro, “Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications”, Math. Method Appl. Sci., 41:1 (2018), 336–352 | DOI | MR | Zbl

[8] A. Alsaedi, “Existence of solutions for integrodifferential equations of fractional order with anti periodic boundary conditions”, Int. J. Diff. Equ., 2009 (2009), 417606 | MR | Zbl

[9] K. Balachandran, J. J. Trujillo, “The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces”, Nonl. Anal. Theory Meth. Appl., 72:12 (2010), 4587–4593 | DOI | MR | Zbl

[10] Y. K. Chang, A. Anguraj, K. Karthikeyan, “Existence of solutions for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators”, Nonl. Anal. Theory Meth. Appl., 71:10 (2009), 4377–4386 | DOI | MR | Zbl

[11] D. Delbosco, L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation”, J. Math. Anal. Appl., 204:2 (1996), 609–625 | DOI | MR | Zbl

[12] K. Diethelem, N. J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265:2 (2002), 229–248 | DOI | MR

[13] K. M. Furati, M. D. Kassim, “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Appl., 64:6 (2012), 1616–1626 | DOI | MR | Zbl

[14] S. Harikrishnan, E. M. Elsayed, K. Kanagarajan, “Existence and uniqueness results for fractional pantograph equations involving $\psi$-Hilfer fractional derivative”, Dyn. Cont. Disc. Impuls. Sys., 25:5 (2018), 319–328 | MR | Zbl

[15] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[16] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, 2016, arXiv: 1612.08596 | Zbl

[17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[18] V. Lakshmikantham, A. S. Vatsala, “Basic theory of fractional differential equations”, Nonl. Anal. Theory Meth. Appl., 69:8 (2008), 2677–2682 | DOI | MR | Zbl

[19] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl

[20] J. V. C. da Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator, 2017, arXiv: 1709.03634 | MR

[21] J. V.C. da Sousa, E. C. de Oliveira, “On the $\psi $-Hilfer fractional derivative”, Comm. Nonl. Sci. Numer. Simul., 60 (2018), 72–91 | DOI | MR

[22] J. V. C. da Sousa, E. C. de Oliveira, “On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the $\psi $-Hilfer operator”, J. Fixed Point Theory Appl., 20:3 (2018), 96 | DOI | MR | Zbl

[23] D. Vivek, K. Kanagarajan, E. M. Elsayed, “Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions”, Mediterr. J. Math., 15:1 (2018), 1–15 | DOI | MR | Zbl

[24] J. Wang, Y. Zhang, “Nonlocal initial value problems for differential equations with Hilfer fractional derivative”, Appl. Math. Comput., 266 (2015), 850–859 | MR | Zbl

[25] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014 | MR | Zbl