Mots-clés : nonlocal conditions
@article{UFA_2019_11_4_a12,
author = {H. A. Wahash and M. S. Abdo and S. K. Panchal},
title = {Fractional integrodifferential equations with nonlocal conditions and generalized {Hilfer} fractional derivative},
journal = {Ufa mathematical journal},
pages = {151--170},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/}
}
TY - JOUR AU - H. A. Wahash AU - M. S. Abdo AU - S. K. Panchal TI - Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative JO - Ufa mathematical journal PY - 2019 SP - 151 EP - 170 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/ LA - en ID - UFA_2019_11_4_a12 ER -
%0 Journal Article %A H. A. Wahash %A M. S. Abdo %A S. K. Panchal %T Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative %J Ufa mathematical journal %D 2019 %P 151-170 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/ %G en %F UFA_2019_11_4_a12
H. A. Wahash; M. S. Abdo; S. K. Panchal. Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 151-170. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a12/
[1] M. S. Abdo, S. K. Panchal, “Existence and continuous dependence for fractional neutral functional differential equations”, J. Math. Model., 5:2 (2017), 153–170 | MR | Zbl
[2] M. S. Abdo, S. K. Panchal, “Fractional integro-differential equations involving $\psi$-Hilfer fractional derivative”, Adv. Appl. Math. Mech., 11:2 (2019), 338–359 | DOI | MR
[3] M. S. Abdo, S. K. Panchal, A. M. Saeed, “Indian Acad”, Proc. Sci. (Math. Sci.), 129:5 (2019), 65 | DOI | MR | Zbl
[4] M. S. Abdo, S. K. Panchal, “Weighted fractional neutral functional differential equations”, J. Siber. Federal Univ. Math. Phys., 11:5 (2018), 535–549 | DOI | MR
[5] R. Agarwal, S. Hristova, D. O'Regan, “A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations”, Fract. Calc. Appl. Anal., 19:2 (2016), 290–318 | DOI | MR | Zbl
[6] R. Almeida, “A Caputo fractional derivative of a function with respect to another function”, Commun. Nonl. Sci. Numer. Simul., 44 (2017), 460–481 | DOI | MR
[7] R. Almeida, A. B. Malinowska, M. T. Monteiro, “Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications”, Math. Method Appl. Sci., 41:1 (2018), 336–352 | DOI | MR | Zbl
[8] A. Alsaedi, “Existence of solutions for integrodifferential equations of fractional order with anti periodic boundary conditions”, Int. J. Diff. Equ., 2009 (2009), 417606 | MR | Zbl
[9] K. Balachandran, J. J. Trujillo, “The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces”, Nonl. Anal. Theory Meth. Appl., 72:12 (2010), 4587–4593 | DOI | MR | Zbl
[10] Y. K. Chang, A. Anguraj, K. Karthikeyan, “Existence of solutions for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators”, Nonl. Anal. Theory Meth. Appl., 71:10 (2009), 4377–4386 | DOI | MR | Zbl
[11] D. Delbosco, L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation”, J. Math. Anal. Appl., 204:2 (1996), 609–625 | DOI | MR | Zbl
[12] K. Diethelem, N. J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265:2 (2002), 229–248 | DOI | MR
[13] K. M. Furati, M. D. Kassim, “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Appl., 64:6 (2012), 1616–1626 | DOI | MR | Zbl
[14] S. Harikrishnan, E. M. Elsayed, K. Kanagarajan, “Existence and uniqueness results for fractional pantograph equations involving $\psi$-Hilfer fractional derivative”, Dyn. Cont. Disc. Impuls. Sys., 25:5 (2018), 319–328 | MR | Zbl
[15] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl
[16] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, 2016, arXiv: 1612.08596 | Zbl
[17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[18] V. Lakshmikantham, A. S. Vatsala, “Basic theory of fractional differential equations”, Nonl. Anal. Theory Meth. Appl., 69:8 (2008), 2677–2682 | DOI | MR | Zbl
[19] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[20] J. V. C. da Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator, 2017, arXiv: 1709.03634 | MR
[21] J. V.C. da Sousa, E. C. de Oliveira, “On the $\psi $-Hilfer fractional derivative”, Comm. Nonl. Sci. Numer. Simul., 60 (2018), 72–91 | DOI | MR
[22] J. V. C. da Sousa, E. C. de Oliveira, “On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the $\psi $-Hilfer operator”, J. Fixed Point Theory Appl., 20:3 (2018), 96 | DOI | MR | Zbl
[23] D. Vivek, K. Kanagarajan, E. M. Elsayed, “Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions”, Mediterr. J. Math., 15:1 (2018), 1–15 | DOI | MR | Zbl
[24] J. Wang, Y. Zhang, “Nonlocal initial value problems for differential equations with Hilfer fractional derivative”, Appl. Math. Comput., 266 (2015), 850–859 | MR | Zbl
[25] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014 | MR | Zbl