Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 140-150
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we consider a family
$H_\mu(p),$ $\mu>0,$ $p\in\mathbb{T}^3$, of the generalized
Friedrichs models with the perturbation of rank one. This system describes a
system of two particles moving on the three dimensional lattice
$\mathbb{Z}^3$ and interacting via a pair of local repulsive
potentials. One of the reasons to consider such family
of the generalized Friedrichs models is that this family generalizes and involves some important behaviors
of the Hamiltonians for systems of both bosons and fermions on
lattices. In the work, we study the existence or absence of the
eigenvalues of the operator $H_\mu(p)$ located outside the essential
spectrum depending on the values of $\mu>0$ and $p\in
U_{\delta}(p_{\,0})\subset\mathbb{T}^3$. We prove a analytic dependence on the parameters for such
eigenvalue and an associated eigenfunction and the latter is found in a certain explicit form. We prove the existence of
coupling constant threshold $\mu=\mu(p)>0$ for the operator
$H_\mu(p)$, $p\in U_{\delta}(p_{\,0})$, namely, we show that the operator $H_\mu(p)$
has no eigenvalue for all $0\mu\mu(p)$ and there exists a unique
eigenvalue $z(\mu,p)$ for each $\mu>\mu(p)$ and this eigenvalue is located above the
threshold $z=M(p)$. We find necessary and sufficient conditions
allowing us to determine whether the threshold $z=M(p)$ is an eigenvalue or
a virtual level or a regular point in the essential spectrum of
the operator $H_\mu(p),$ $p\in U_{\delta}(p_{\,0})$.
Keywords:
coupling constant threshold, repulsive potential, eigenvalue, generalized Friedrichs model, regular point.
@article{UFA_2019_11_4_a11,
author = {S. N. Lakaev and M. Darus and S. T. Dustov},
title = {Threshold phenomenon for a family of the generalized {Friedrichs} models with the perturbation of rank one},
journal = {Ufa mathematical journal},
pages = {140--150},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/}
}
TY - JOUR AU - S. N. Lakaev AU - M. Darus AU - S. T. Dustov TI - Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one JO - Ufa mathematical journal PY - 2019 SP - 140 EP - 150 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/ LA - en ID - UFA_2019_11_4_a11 ER -
%0 Journal Article %A S. N. Lakaev %A M. Darus %A S. T. Dustov %T Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one %J Ufa mathematical journal %D 2019 %P 140-150 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/ %G en %F UFA_2019_11_4_a11
S. N. Lakaev; M. Darus; S. T. Dustov. Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 140-150. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/