@article{UFA_2019_11_4_a11,
author = {S. N. Lakaev and M. Darus and S. T. Dustov},
title = {Threshold phenomenon for a family of the generalized {Friedrichs} models with the perturbation of rank one},
journal = {Ufa mathematical journal},
pages = {140--150},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/}
}
TY - JOUR AU - S. N. Lakaev AU - M. Darus AU - S. T. Dustov TI - Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one JO - Ufa mathematical journal PY - 2019 SP - 140 EP - 150 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/ LA - en ID - UFA_2019_11_4_a11 ER -
%0 Journal Article %A S. N. Lakaev %A M. Darus %A S. T. Dustov %T Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one %J Ufa mathematical journal %D 2019 %P 140-150 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/ %G en %F UFA_2019_11_4_a11
S. N. Lakaev; M. Darus; S. T. Dustov. Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 140-150. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a11/
[1] S. N. Lakaev, A. Ibrahim, Sh. H. Kurbanov, “Threshold effects for the generalized Friedrichs model with the perturbation of rank one”, Abstr. Appl. Anal., 2012 (2012), 180953 | DOI | MR | Zbl
[2] Funct. Anal. Appl., 17:4 (1983), 317–319 | DOI | MR | Zbl
[3] J. Soviet Math., 45:6 (1989), 1540–1565 | DOI | MR | Zbl
[4] Funct. Anal. Appl., 38:3 (2004), 202–216 | DOI | DOI | MR | Zbl
[5] J. Hecker Denschlag, A. J. Daley, “Exotic atom pairs: Repulsively bound states in an optical lattice”, Proceedings of the International School of Physics “Enrico Fermi”, 164, 2007, 677–696
[6] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley, A. Kantian, H. P. Bc̈hler, P. Zoller, “Repulsively bound atom pairs in an optical lattice”, Nature, 441 (2006), 853–856 | DOI
[7] Theor. Math. Phys., 103:1 (1995), 390–397 | DOI | MR
[8] A. Mogilner, “Hamiltonians in solid state physics as multi-particle discrete Schrödinger operators: Problems and results”, Adv. Soviet Math., 5 (1991), 139–194 | MR | Zbl
[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press, New York, 1979 | MR | Zbl
[10] K. O. Friedrichs, “On the perturbation of continuous spectra”, Comm. Appl. Math., 1:4 (1948), 361–406 | DOI | MR | Zbl
[11] K. O. Friedrichs, Perturbation of spectra in Hilbert space, Amer. Math. Soc., Providence, RI, 2008 | MR
[12] V. A. Malishev, R. A. Minlos, Linear infinite-particle operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, RI, 1995 | DOI | MR
[13] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “The threshold effects for a family of Generalized Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168 | DOI | MR | Zbl
[14] S. N. Lakaev, M. Darus, Sh. H. Kurbanov, “Puiseux series expansion for an eigenvalue of the generalized Friedrichs model with perturbation of rank 1”, J. Phys. A: Math. Theor., 46:20 (2013), 205304 | DOI | MR | Zbl
[15] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR | Zbl
[16] S. N. Lakaev, Sh. Yu. Holmatov, “Asymptotics of Eigenvalues of a two-particle Schrödinger operators on lattices with zero range interaction”, J. Phys. A: Math. Theor., 44:13 (2011), 135304 | DOI | MR | Zbl
[17] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices”, Comm. Math. Phys., 262:1 (2006), 91–115 | DOI | MR | Zbl
[18] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York, 1978 | MR | Zbl
[19] R. Courant, D. Hilbert, Methods of mathematical physics, v. 2, Partial differential equations, John Wiley Sons, New York, 1966 | MR
[20] Theor. Math. Phys., 91:1 (1992), 362–372 | DOI | MR | MR
[21] M. V. Fedoryuk, Asymptotics of integrals and series, Nauka, M., 1987 (in Russian) | MR