@article{UFA_2019_11_3_a8,
author = {M. N. Kuznetsova},
title = {Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras},
journal = {Ufa mathematical journal},
pages = {109--131},
year = {2019},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a8/}
}
TY - JOUR AU - M. N. Kuznetsova TI - Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras JO - Ufa mathematical journal PY - 2019 SP - 109 EP - 131 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a8/ LA - en ID - UFA_2019_11_3_a8 ER -
M. N. Kuznetsova. Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 109-131. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a8/
[1] E. V. Ferapontov, K. R. Khusnutdinova, “On the integrability of (2+1)-dimensional quasilinear systems”, Comm. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl
[2] E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, “Classification of integrable (2+1)-dimensional quasilinear hierarchies”, Theor. Math. Phys., 144:1 (2005), 907–915 | DOI | MR | Zbl
[3] E. V. Ferapontov, K. R. Khusnutdinova, S. P. Tsarev, “On a class of three-dimensional integrable Lagrangians”, Comm. Math. Phys., 261:1 (2006), 225–243 | DOI | MR | Zbl
[4] A. V. Odesskii, V. V. Sokolov, “Integrable (2+1)-dimensional systems of hydrodynamic type”, Theor. Math. Phys., 163:2 (2010), 549–586 | DOI | Zbl
[5] L. V. Bogdanov, B. G. Konopelchenko, “Grassmannians $Gr(N-1,N+1)$, closed differential $N-1$-forms and $N$-dimensional integrable systems”, J. Phys. A: Math. Theor., 46:8 (2013), 085201 | DOI | MR | Zbl
[6] M. V. Pavlov, Z. Popowicz, “On integrability of a special class of two-component (2+1)-dimensional hydrodynamic-type systems”, SIGMA, 5 (2009), 011 | MR | Zbl
[7] A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations”, Theor. Math. Phys., 154:3 (2008), 405–417 | DOI | MR | Zbl
[8] M. Mañas, L. M. Alonso, C. Alvarez-Fernández, “The multicomponent 2D Toda hierarchy: discrete flows and string equations”, Inverse Problems, 25 (2009), 065007 | DOI | MR | Zbl
[9] V. E. Zakharov, S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Funct. Anal. Appl., 19:2 (1985), 89–101 | DOI | MR | Zbl
[10] I. S. Krasil'shchik, A. Sergyeyev, O. I. Morozov, “Infinitely many nonlocal conservation laws for the $ABC$ equation with $A+B+C\ne0$”, Calc. Var. PDEs, 55:5 (2016), 123 | DOI | MR | Zbl
[11] A. B. Shabat, R. I. Yamilov, Exponential systems of type I and the Cartan matrix, Preprint, Bashkir branch of AS USSR, Ufa, 1981 (in Russian)
[12] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl
[13] F. H. Mukminov, A. V. Zhiber, “Quadratic systems, symmetries, characteristic and complete algebras”, Problems of mathematical physics and the asymptotics of their solutions, Bashkir Scientific Center of the Ural Branch AS USSR, Ufa, 1991, 14–32 (in Russian)
[14] A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, Characteristic Lie rings and nonlinear integrable equations, Inst. Comp. Stud., M., 2012 (in Russian) | MR
[15] A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufa Math. J., 4:3 (2012), 17–85 | MR | Zbl
[16] I. T. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for (2+1)-dimensional lattices”, Physica Scripta, 87:6 (2013), 065005 | DOI | Zbl
[17] I. T. Habibullin, M. N. Poptsova (Kuznetsova), “Classification of a subclass of two-dimensional lattices via characteristic lie rings”, SIGMA, 13 (2017), 073 | MR | Zbl
[18] I. T. Habibullin, M. N. Poptsova (Kuznetsova), “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105 | DOI | MR
[19] A. B. Shabat, “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR | Zbl
[20] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer.Math. Soc., 108:2 (1963), 195–222 | DOI | MR | Zbl
[21] D. Millionshchikov, “Lie Algebras of Slow Growth and Klein-Gordon PDE”, Algebras Represent. Theor., 21:5 (2018), 1037–1069 | DOI | MR | Zbl
[22] A. B. Shabat, R. I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A, 227:1–2 (1997), 15–23 | DOI | MR | Zbl
[23] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), 541–623 | DOI | MR
[24] I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theor. Math. Phys., 151:3 (2007), 781–790 | DOI | MR | Zbl
[25] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl