On series of Darboux integrable discrete equations on square lattice
Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 99-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a series of Darboux integrable discrete equations on a square lattice. The equations in the series are numbered by natural numbers $M$. All the equations possess a first order first integral in one of directions of the two-dimensional lattice. The minimal order of a first integral in the other direction is equal to $3M$ for an equation with the number $M$. First integrals in the second direction are defined by a simple general formula depending on the number $M$. In the cases $M=1,2,3$ we show that the equations are integrable by quadrature. More precisely, we construct their general solutions in terms of the discrete integrals. We also construct a modified series of Darboux integrable discrete equations having the first integrals of the minimal orders $2$ and $3M-1$ in different directions, where $M$ is the equation number in series. Both first integrals are not obvious in this case. A few similar series of integrable equations were known before; however, they were of Burgers or sine-Gordon type. A similar series of the continuous hyperbolic type equations was discussed by A.V. Zhiber and V.V. Sokolov in 2001.
Keywords: discrete quad-equation, Darboux integrability, general solution.
@article{UFA_2019_11_3_a7,
     author = {R. N. Garifullin and R. I. Yamilov},
     title = {On series of {Darboux} integrable discrete equations on square lattice},
     journal = {Ufa mathematical journal},
     pages = {99--108},
     year = {2019},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a7/}
}
TY  - JOUR
AU  - R. N. Garifullin
AU  - R. I. Yamilov
TI  - On series of Darboux integrable discrete equations on square lattice
JO  - Ufa mathematical journal
PY  - 2019
SP  - 99
EP  - 108
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a7/
LA  - en
ID  - UFA_2019_11_3_a7
ER  - 
%0 Journal Article
%A R. N. Garifullin
%A R. I. Yamilov
%T On series of Darboux integrable discrete equations on square lattice
%J Ufa mathematical journal
%D 2019
%P 99-108
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a7/
%G en
%F UFA_2019_11_3_a7
R. N. Garifullin; R. I. Yamilov. On series of Darboux integrable discrete equations on square lattice. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 99-108. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a7/

[1] Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | DOI | MR | Zbl

[2] R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonl. Math. Phys., 26:3 (2019), 333–357 | DOI | MR | Zbl

[3] R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201 | DOI | MR | Zbl

[4] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205 | DOI | MR | Zbl

[5] Ufa Math. J., 4:3 (2012), 174–180 | MR | MR

[6] R. N. Garifullin, R. I. Yamilov, “Integrable discrete nonautonomous quad-equations as B?acklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys. Confer. Ser., 621 (2015), 012005 | DOI

[7] Theor. Math. Phys., 200:1 (2019), 966–984 | DOI | DOI | MR | MR

[8] G. Gubbiotti, C. Scimiterna, R. I. Yamilov, “Darboux Integrability of Trapezoidal $H^4$ and $H^6$ Families of Lattice Equations II: General Solutions”, SIGMA, 14 (2018), 008, 51 pp. | MR | Zbl

[9] G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal $H^4$ and $H^4$ families of lattice equations I: first integrals”, J. Phys. A: Math. Theor., 50:34 (2017), 345205 | DOI | MR | Zbl

[10] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp. | MR | Zbl

[11] R. Hirota, “Discrete two-dimensional Toda molecule equation”, J. Phys. Soc. Japan, 56:12 (1987), 4285–4288 | DOI | MR

[12] S. Ya. Startsev, “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092, 14 pp. | MR | Zbl

[13] Theor. Math. Phys., 85:2 (1991), 1269–1275 | MR | MR | Zbl

[14] Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl