@article{UFA_2019_11_3_a7,
author = {R. N. Garifullin and R. I. Yamilov},
title = {On series of {Darboux} integrable discrete equations on square lattice},
journal = {Ufa mathematical journal},
pages = {99--108},
year = {2019},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a7/}
}
R. N. Garifullin; R. I. Yamilov. On series of Darboux integrable discrete equations on square lattice. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 99-108. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a7/
[1] Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | DOI | MR | Zbl
[2] R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonl. Math. Phys., 26:3 (2019), 333–357 | DOI | MR | Zbl
[3] R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201 | DOI | MR | Zbl
[4] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205 | DOI | MR | Zbl
[5] Ufa Math. J., 4:3 (2012), 174–180 | MR | MR
[6] R. N. Garifullin, R. I. Yamilov, “Integrable discrete nonautonomous quad-equations as B?acklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys. Confer. Ser., 621 (2015), 012005 | DOI
[7] Theor. Math. Phys., 200:1 (2019), 966–984 | DOI | DOI | MR | MR
[8] G. Gubbiotti, C. Scimiterna, R. I. Yamilov, “Darboux Integrability of Trapezoidal $H^4$ and $H^6$ Families of Lattice Equations II: General Solutions”, SIGMA, 14 (2018), 008, 51 pp. | MR | Zbl
[9] G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal $H^4$ and $H^4$ families of lattice equations I: first integrals”, J. Phys. A: Math. Theor., 50:34 (2017), 345205 | DOI | MR | Zbl
[10] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp. | MR | Zbl
[11] R. Hirota, “Discrete two-dimensional Toda molecule equation”, J. Phys. Soc. Japan, 56:12 (1987), 4285–4288 | DOI | MR
[12] S. Ya. Startsev, “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092, 14 pp. | MR | Zbl
[13] Theor. Math. Phys., 85:2 (1991), 1269–1275 | MR | MR | Zbl
[14] Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl