Weak positive matrices and hyponormal weighted shifts
Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 88-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study $k$-positive matrices, that is, the class of Hankel matrices, for which the $(k+1)\times(k+1)$-block-matrices are positive semi-definite. This notion is intimately related to a $k$-hyponormal weighted shift and to Stieltjes moment sequences. Using elementary determinant techniques, we prove that for a $k$-positive matrix, a $k\times k$-block-matrix has non zero determinant if and only if all $k\times k$-block matrices have non zero determinant. We provide several applications of our main result. First, we extend the Curto-Stampfly propagation phenomena for for $2$-hyponormal weighted shift $W_\alpha$ stating that if $\alpha_k=\alpha_{k+1}$ for some $n\ge 1$, then for all $n\geq 1, \alpha_n=\alpha_k$, to $k$-hyponormal weighted shifts to higher order. Second, we apply this result to characterize a recursively generated weighted shift. Finally, we study the invariance of $k$-hyponormal weighted shifts under one rank perturbation. A special attention is paid to calculating the invariance interval of $2$-hyponormal weighted shift; here explicit formulae are provided.
Keywords: subnormal operators, $k$-hyponormal operators, weighted shifts, moment problem.
Mots-clés : $k$-positive matrices, perturbation
@article{UFA_2019_11_3_a6,
     author = {H. El-Azhar and K. Idrissi and E. H. Zerouali},
     title = {Weak positive matrices and hyponormal weighted shifts},
     journal = {Ufa mathematical journal},
     pages = {88--98},
     year = {2019},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/}
}
TY  - JOUR
AU  - H. El-Azhar
AU  - K. Idrissi
AU  - E. H. Zerouali
TI  - Weak positive matrices and hyponormal weighted shifts
JO  - Ufa mathematical journal
PY  - 2019
SP  - 88
EP  - 98
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/
LA  - en
ID  - UFA_2019_11_3_a6
ER  - 
%0 Journal Article
%A H. El-Azhar
%A K. Idrissi
%A E. H. Zerouali
%T Weak positive matrices and hyponormal weighted shifts
%J Ufa mathematical journal
%D 2019
%P 88-98
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/
%G en
%F UFA_2019_11_3_a6
H. El-Azhar; K. Idrissi; E. H. Zerouali. Weak positive matrices and hyponormal weighted shifts. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 88-98. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/

[1] P. R. Halmos, “Normal dilations and extensions of operators”, Sum. Bras. Math., 2:9 (1950), 124–134 | MR

[2] J. Bram, “Subnormal operators”, Duke Math. J., 22:1 (1955), 75–94 | DOI | MR | Zbl

[3] J. B. Conway, The theory of subnormal operators, Math. Surveys Monogr., 36, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl

[4] A. Athavale, “On joint hyponormality of operators”, Proc. Amer. Math. Soc., 103:2 (1988), 417–423 | DOI | MR | Zbl

[5] A. Lambert, “Subnormality, weighted shifts”, J. Lond. Math. Soc. (2), 14:3 (1976), 476–480 | DOI | MR | Zbl

[6] J. Stampfli, “Hyponormal operators”, Pacific J. Math., 12:4 (1962), 1453–1458 | DOI | MR | Zbl

[7] R. Ben Taher, M. Rachidi, E. H. Zerouali, “Recursive subnormal completion and the truncated moment problem”, Bull. Lond. Math. Soc., 33:4 (2001), 425–432 | DOI | MR | Zbl

[8] R. E. Curto, “Quadratically hyponormal weighted shifts”, Integ. Equat. Oper. Theor., 13:1 (1990), 49–66 | DOI | MR | Zbl

[9] R. E. Curto, W. Lee, “$k$-hyponormality of finite rank perturbations of unilateral weighted shifts”, Trans. Amer. Math. Soc, 357:12 (2005), 4719–4737 | DOI | MR | Zbl

[10] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver Boyd, Edingburg, 1965 | MR | Zbl

[11] R. E. Curto, L. A. Fialkow, “Recursively generated weighted shifts and the subnormal completion problem II”, Integ. Equat. Oper. Theor., 18:4 (1994), 369–426 | DOI | MR | Zbl

[12] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[13] C. Berg, D. Szwarc, “A determinant characterization of moment sequences with finitely many mass-points”, Linear Multilinear Alg., 63:8 (2015), 1568–1576 | DOI | MR | Zbl

[14] C. E. Chidume, M. Rachidi, E. H. Zerouali, “Solving the general truncated moment problem by the r-generalized Fibonacci sequences method”, J. Math. Anal. Appl., 256:2 (2001), 625–635 | DOI | MR | Zbl

[15] R. E. Curto, L. A. Fialkow, “Recursively generated weighted shifts and the subnormal completion problem”, Integ. Equat. Oper. Theor., 17:2 (1993), 202–246 | DOI | MR | Zbl