Weak positive matrices and hyponormal weighted shifts
Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 88-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study $k$-positive matrices, that is, the class of Hankel matrices, for which the $(k+1)\times(k+1)$-block-matrices are positive semi-definite. This notion is intimately related to a $k$-hyponormal weighted shift and to Stieltjes moment sequences. Using elementary determinant techniques, we prove that for a $k$-positive matrix, a $k\times k$-block-matrix has non zero determinant if and only if all $k\times k$-block matrices have non zero determinant. We provide several applications of our main result. First, we extend the Curto-Stampfly propagation phenomena for for $2$-hyponormal weighted shift $W_\alpha$ stating that if $\alpha_k=\alpha_{k+1}$ for some $n\ge 1$, then for all $n\geq 1, \alpha_n=\alpha_k$, to $k$-hyponormal weighted shifts to higher order. Second, we apply this result to characterize a recursively generated weighted shift. Finally, we study the invariance of $k$-hyponormal weighted shifts under one rank perturbation. A special attention is paid to calculating the invariance interval of $2$-hyponormal weighted shift; here explicit formulae are provided.
Keywords: subnormal operators, $k$-hyponormal operators, weighted shifts, moment problem.
Mots-clés : $k$-positive matrices, perturbation
@article{UFA_2019_11_3_a6,
     author = {H. El-Azhar and K. Idrissi and E. H. Zerouali},
     title = {Weak positive matrices and hyponormal weighted shifts},
     journal = {Ufa mathematical journal},
     pages = {88--98},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/}
}
TY  - JOUR
AU  - H. El-Azhar
AU  - K. Idrissi
AU  - E. H. Zerouali
TI  - Weak positive matrices and hyponormal weighted shifts
JO  - Ufa mathematical journal
PY  - 2019
SP  - 88
EP  - 98
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/
LA  - en
ID  - UFA_2019_11_3_a6
ER  - 
%0 Journal Article
%A H. El-Azhar
%A K. Idrissi
%A E. H. Zerouali
%T Weak positive matrices and hyponormal weighted shifts
%J Ufa mathematical journal
%D 2019
%P 88-98
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/
%G en
%F UFA_2019_11_3_a6
H. El-Azhar; K. Idrissi; E. H. Zerouali. Weak positive matrices and hyponormal weighted shifts. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 88-98. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a6/