@article{UFA_2019_11_3_a2,
author = {N. I. Zhukova},
title = {Graphs of totally geodesic foliations on {pseudo-Riemannian} manifolds},
journal = {Ufa mathematical journal},
pages = {29--43},
year = {2019},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a2/}
}
N. I. Zhukova. Graphs of totally geodesic foliations on pseudo-Riemannian manifolds. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 29-43. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a2/
[1] H.E. Winkelnkemper, “The graph of a foliation”, Ann. Global Anal. Geom., 1:3 (1993), 51–75 | DOI | MR
[2] I. Tamura, Topology of foliations: An Introduction, Translations of Mathematical Monographs, 97, AMS, 1992, 193 pp. | MR | Zbl
[3] A. Connes, Non-commutative geometry, Academic Press, Boston, 1994, 654 pp. | MR
[4] R. Blumenthal, J. Hebda, “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl
[5] R. Blumenthal, J. Hebda, “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quarterly J. Math. Oxford Ser. (2), 35 (1984), 383–392 | DOI | MR | Zbl
[6] N.I. Zhukova, “The graph of a foliation with an Ehresmann connection and the stability of leaves”, Russian Math. Iz. VUZ, 38:2 (1994), 76–79 | MR | Zbl
[7] N.I. Zhukova, “Properties of the graphs of Ehresmann foliations”, Vestn. NNGU. Ser. Mat., 2004, no. 1, 73–87 (in Russian)
[8] N.I. Zhukova, “Singular foliations with Ehresmann connections and their holonomy groupoids”, Banach Center Publ., 76, 2007, 471–490 | DOI | MR | Zbl
[9] N.I. Zhukova, “Local and global stability of compact leaves and foliations”, J. of Math. Phys., Analysis and Geometry, 9:3 (2013), 400–420 | MR | Zbl
[10] R. A. Wolak, “The graph of a totally geodesic foliation”, Annales Polonici Mathematici, 60:3 (1995), 241–247 | DOI | MR | Zbl
[11] A. Yu. Dolgonosova, N.I. Zhukova, “Pseudo-Riemannian foliations and their graphs”, Lobachevskii Journal of Math., 39:1 (2018), 54–64 | DOI | MR | Zbl
[12] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York–London, 1983, 483 pp. | MR | Zbl
[13] A. Gray, “Pseudo-Riemannian almost product manifolds and submersions”, J. Math. Mech., 16 (1967), 715–737 | MR | Zbl
[14] G. Baditoiu, “Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces”, Proceedings of the London Math. Soc., 105:6 (2012), 1315–1338 | DOI | MR | Zbl
[15] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, John Wiley Sons, New York, 1963 | MR | Zbl
[16] K. Yokumoto, “Mutual exclusiveness along spacelike, timelike, and lightlike leaves in totally geodesic foliations of lightlike complete Lorentzian two-dimensional tori”, Hokkaido Math. J., 31:3 (2002), 643–663 | DOI | MR
[17] S. Kashiwabara, “The decomposition of a differentiable manifolds and its applications”, Tohoku Math. J. (2), 11:1 (1959), 43–53 | DOI | MR | Zbl
[18] N.I. Zhukova, “Foliations that are compatible with systems of paths”, Soviet Math. Iz. VUZ., 33:7 (1989), 5–15 | MR | Zbl
[19] H. Wu, “On the de Rham decomposition theorem”, Illinois J. Math., 8:2 (1964), 291–311 | DOI | MR | Zbl