Asymptotics of eigenvalues of infinite block matrices
Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 11-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to determining the asymptotic behavior of eigenvalues, which is one of topical directions in studying operators generated by tridiagonal infinite block matrices in Hilbert spaces of infinite sequences with complex coordinates or, in other words, to discrete Sturm-Liouville operators. In the work we consider a class of non-self-adjoint operators with discrete spectrum being a sum of a self-adjoint operator serving as an unperturbed operator and a perturbation, which is an operator relatively compact with respect to the unperturbed operator. In order to study the asymptotic behavior of eigenvalues, in the paper we develop an adapted scheme of abstract method of similar operators. The main idea of this approach is that by means of the similarity operator, the studying of spectral properties of the original operator is reduced to studying the spectral properties of an operator of a simpler structure. Employing this scheme, we write out the formulae for the asymptotics of arithmetical means of the eigenvalues of the considered class of the operators. We note that such approach differs essentially from those employed before. The obtained general result is applied for determining eigenvalues of particular operators. Namely, we provide asymptotics for the eigenvalues of symmetric and non-symmetric tridiagonal infinite matrices in the scalar case, the asymptotics for arithmetical means of the eigenvalues of block matrices with power behavior of eigenvalues of unperturbed operator and generalized Jacobi matrices with various number of non-zero off-diagonals.
Keywords: infinite tridiagonal block matrices, the method of similar operators, eigenvalues, spectrum.
Mots-clés : Jacobi matrices
@article{UFA_2019_11_3_a1,
     author = {I. N. Braeutigam and D. M. Polyakov},
     title = {Asymptotics of eigenvalues of infinite block matrices},
     journal = {Ufa mathematical journal},
     pages = {11--28},
     year = {2019},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a1/}
}
TY  - JOUR
AU  - I. N. Braeutigam
AU  - D. M. Polyakov
TI  - Asymptotics of eigenvalues of infinite block matrices
JO  - Ufa mathematical journal
PY  - 2019
SP  - 11
EP  - 28
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a1/
LA  - en
ID  - UFA_2019_11_3_a1
ER  - 
%0 Journal Article
%A I. N. Braeutigam
%A D. M. Polyakov
%T Asymptotics of eigenvalues of infinite block matrices
%J Ufa mathematical journal
%D 2019
%P 11-28
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a1/
%G en
%F UFA_2019_11_3_a1
I. N. Braeutigam; D. M. Polyakov. Asymptotics of eigenvalues of infinite block matrices. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 11-28. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a1/

[1] M.G. Krein, “Infinite $J$-matrices and matrix moment problem”, Dokl. AN SSSR, 69:3 (1949), 125–128 (in Russian) | Zbl

[2] A.G. Kostyuchenko, K.A. Mirzoev, “Three-term recurrence relations with matrix coefficients. The completely indefinite case”, Math. Notes, 63:5 (1998), 624–630 | DOI | DOI | MR | MR | Zbl

[3] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Advances in Mathematics, 137 (1998), 82–203 | DOI | MR | Zbl

[4] A.J. Duran, P. Lopez-Rodrigez, “The matrix moment problem”, Margarita Mathematica en memoria de Jose Javier Guadalupe, eds. L. Espanol, J. L. Varona, Universidad de La Rioja, Logrono, 2001, 333–348 | MR | Zbl

[5] A.S. Kostenko, M.M. Malamud, D.D. Natyagajlo, “Matrix Schrödinger operator with $\delta$-Interactions”, Math. Notes, 100:1 (2016), 49–65 | DOI | DOI | MR | Zbl

[6] K.A. Mirzoev, T.A. Safonova. on the deficiency index of the vector-valued Sturm-Liouville operator, Math. Notes, 99:2 (2016), 290–303 | DOI | MR | Zbl

[7] I.N. Braeutigam, K.A. Mirzoev, “Deficiency indices of the operators generated by infinite Jacobi matrices with operator entries”, St. Petersburg Math. J., 30:4 (2019), 621–638 | DOI | MR | Zbl

[8] V. Budyika, M. Malamud, A. Posilicano, “Nonrelativistic Limit for $2p \times 2p$-Dirac Operators with Point Interactions on a Discrete Set”, Russian Journal of Mathematical Physics, 24:4 (2017), 426–435 | DOI | MR | Zbl

[9] V.S. Budyka, M.M. Malamud, A. Posilicano, “To the spectral theory of one-dimensional matrix Dirac operators with point matrix interactions”, Dokl. Math., 97:2 (2018), 115–121 | DOI | MR | Zbl

[10] P. Djakov, B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, 135 (2005), 70–104 | MR | Zbl

[11] P.A. Cojuhari, J. Janas, “Discreteness of the spectrum for some unbounded Jacobi matrices”, Acta Sci. Math. (Szeged), 73 (2007), 649–667 | MR | Zbl

[12] P.A. Cojuhari, “On the spectrum of a class of block jacobi matrices”, Operator theory, Structed Matrices and Dilations, 2007, 137–152 | MR | Zbl

[13] S. Kupin, S. Naboko, “On the instability of the essential spectrum for block Jacobi matrices”, S. Constr Approx., 48:3 (2018), 473–500 | DOI | MR | Zbl

[14] J. Janas, S. Naboko, “Infinite Jacobi matrices with unbounded entries: Asymptotics of eigenvalues and the transformation operator approach”, SIAM J. Math. Anal., 36:2 (2004), 643–658 | DOI | MR | Zbl

[15] A. Boutet de Monvel, S. Naboko, L. Silva, “The asymptotic behaviour of eigenvalues of modified Jaynes-Cummings model”, Asymptotic Analysis, 47:3–4 (2006), 291–315 | MR | Zbl

[16] J. Janas, M. Malejki, “Alternative approaches to asymptotic behavior of eigenvalues of some unbounded Jacobi matrices”, Journal of Computational and Applied Mathematics, 200 (2007), 342–356 | DOI | MR | Zbl

[17] M. Malejki, “Eigenvalues for some complex infinite tridiagonal matrices”, Journal of Advances in Mathematics and Computer Science, 26:5 (2018), 1–9 | DOI

[18] M. Malejki, “Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices”, Linear Algebra and its Applications, 431 (2009), 1952–1970 | DOI | MR | Zbl

[19] M. Malejki, “Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices”, Opuscula Mathematica, 30:3 (2010), 311–330 | DOI | MR | Zbl

[20] A. Boutet de Monvel, L. Zielinski, “Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices”, Cent. Eur. J. Math., 12:3 (2014), 445–463 | MR | Zbl

[21] Y. Ikebe, N. Asai, Y. Miyazaki, D. Cai, “The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application”, Linear Algebra Appl., 241–243 (1996), 599–618 | DOI | MR | Zbl

[22] A.G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siber. Math., 24:1 (1983), 17–32 | DOI | MR | MR

[23] A.G. Baskakov, Harmonic analysis of linear operators, Voronezh State Univ. Publ., Voronezh, 1987 (in Russian)

[24] A.G. Baskakov, D.M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43 | DOI | DOI | MR | MR | Zbl

[25] A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl

[26] N.B. Uskova, “On the spectral properties of a second-order differential operator with a matrix potential”, Diff. Equat., 52:5 (2016), 557–567 | DOI | DOI | MR | Zbl

[27] N.B. Uskova, “On spectral properties of Sturm-Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94 | DOI | MR

[28] I.N. Braeutigam, D.M. Polyakov, “On the asymptotics of eigenvalues of a fourth-order differential operator with matrix coefficients”, Diff. Equat., 54:4 (2018), 450–467 | DOI | DOI | MR | MR | Zbl

[29] G.V. Garkavenko, N.B. Uskova, “Spectral analysis of a class of difference operators with growing potential”, Vestnik VGU. Ser. Fiz. Matem., 2016, no. 3, 101–111 (in Russian) | Zbl

[30] G.V. Garkavenko, N.B. Uskova, “The asymptotic of eigenvalues for difference operator with growing potential”, Matem. Fiz. Komp. Model., 20:4 (2017), 6–17 (in Russian) | MR

[31] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Transl. Math. Monog., 18, Amer. Math. Soc., 1969 | DOI | MR

[32] P.D. Hislop, I.M. Sigal, Introduction to spectral theory: with applications to Schrödinger operators, Applied Mathematical Sciences, 113, Springer, 1996 | DOI | MR | Zbl

[33] A.L. Chistyakov, “Defect indices of $J_m$-matrices and of differential operators with polynomial coefficients”, Math. USSR-Sb., 14:4 (1971), 471–500 | DOI | MR | Zbl