Mots-clés : Jacobi matrices
@article{UFA_2019_11_3_a1,
author = {I. N. Braeutigam and D. M. Polyakov},
title = {Asymptotics of eigenvalues of infinite block matrices},
journal = {Ufa mathematical journal},
pages = {11--28},
year = {2019},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a1/}
}
I. N. Braeutigam; D. M. Polyakov. Asymptotics of eigenvalues of infinite block matrices. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 11-28. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a1/
[1] M.G. Krein, “Infinite $J$-matrices and matrix moment problem”, Dokl. AN SSSR, 69:3 (1949), 125–128 (in Russian) | Zbl
[2] A.G. Kostyuchenko, K.A. Mirzoev, “Three-term recurrence relations with matrix coefficients. The completely indefinite case”, Math. Notes, 63:5 (1998), 624–630 | DOI | DOI | MR | MR | Zbl
[3] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Advances in Mathematics, 137 (1998), 82–203 | DOI | MR | Zbl
[4] A.J. Duran, P. Lopez-Rodrigez, “The matrix moment problem”, Margarita Mathematica en memoria de Jose Javier Guadalupe, eds. L. Espanol, J. L. Varona, Universidad de La Rioja, Logrono, 2001, 333–348 | MR | Zbl
[5] A.S. Kostenko, M.M. Malamud, D.D. Natyagajlo, “Matrix Schrödinger operator with $\delta$-Interactions”, Math. Notes, 100:1 (2016), 49–65 | DOI | DOI | MR | Zbl
[6] K.A. Mirzoev, T.A. Safonova. on the deficiency index of the vector-valued Sturm-Liouville operator, Math. Notes, 99:2 (2016), 290–303 | DOI | MR | Zbl
[7] I.N. Braeutigam, K.A. Mirzoev, “Deficiency indices of the operators generated by infinite Jacobi matrices with operator entries”, St. Petersburg Math. J., 30:4 (2019), 621–638 | DOI | MR | Zbl
[8] V. Budyika, M. Malamud, A. Posilicano, “Nonrelativistic Limit for $2p \times 2p$-Dirac Operators with Point Interactions on a Discrete Set”, Russian Journal of Mathematical Physics, 24:4 (2017), 426–435 | DOI | MR | Zbl
[9] V.S. Budyka, M.M. Malamud, A. Posilicano, “To the spectral theory of one-dimensional matrix Dirac operators with point matrix interactions”, Dokl. Math., 97:2 (2018), 115–121 | DOI | MR | Zbl
[10] P. Djakov, B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, 135 (2005), 70–104 | MR | Zbl
[11] P.A. Cojuhari, J. Janas, “Discreteness of the spectrum for some unbounded Jacobi matrices”, Acta Sci. Math. (Szeged), 73 (2007), 649–667 | MR | Zbl
[12] P.A. Cojuhari, “On the spectrum of a class of block jacobi matrices”, Operator theory, Structed Matrices and Dilations, 2007, 137–152 | MR | Zbl
[13] S. Kupin, S. Naboko, “On the instability of the essential spectrum for block Jacobi matrices”, S. Constr Approx., 48:3 (2018), 473–500 | DOI | MR | Zbl
[14] J. Janas, S. Naboko, “Infinite Jacobi matrices with unbounded entries: Asymptotics of eigenvalues and the transformation operator approach”, SIAM J. Math. Anal., 36:2 (2004), 643–658 | DOI | MR | Zbl
[15] A. Boutet de Monvel, S. Naboko, L. Silva, “The asymptotic behaviour of eigenvalues of modified Jaynes-Cummings model”, Asymptotic Analysis, 47:3–4 (2006), 291–315 | MR | Zbl
[16] J. Janas, M. Malejki, “Alternative approaches to asymptotic behavior of eigenvalues of some unbounded Jacobi matrices”, Journal of Computational and Applied Mathematics, 200 (2007), 342–356 | DOI | MR | Zbl
[17] M. Malejki, “Eigenvalues for some complex infinite tridiagonal matrices”, Journal of Advances in Mathematics and Computer Science, 26:5 (2018), 1–9 | DOI
[18] M. Malejki, “Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices”, Linear Algebra and its Applications, 431 (2009), 1952–1970 | DOI | MR | Zbl
[19] M. Malejki, “Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices”, Opuscula Mathematica, 30:3 (2010), 311–330 | DOI | MR | Zbl
[20] A. Boutet de Monvel, L. Zielinski, “Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices”, Cent. Eur. J. Math., 12:3 (2014), 445–463 | MR | Zbl
[21] Y. Ikebe, N. Asai, Y. Miyazaki, D. Cai, “The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application”, Linear Algebra Appl., 241–243 (1996), 599–618 | DOI | MR | Zbl
[22] A.G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siber. Math., 24:1 (1983), 17–32 | DOI | MR | MR
[23] A.G. Baskakov, Harmonic analysis of linear operators, Voronezh State Univ. Publ., Voronezh, 1987 (in Russian)
[24] A.G. Baskakov, D.M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43 | DOI | DOI | MR | MR | Zbl
[25] A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl
[26] N.B. Uskova, “On the spectral properties of a second-order differential operator with a matrix potential”, Diff. Equat., 52:5 (2016), 557–567 | DOI | DOI | MR | Zbl
[27] N.B. Uskova, “On spectral properties of Sturm-Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94 | DOI | MR
[28] I.N. Braeutigam, D.M. Polyakov, “On the asymptotics of eigenvalues of a fourth-order differential operator with matrix coefficients”, Diff. Equat., 54:4 (2018), 450–467 | DOI | DOI | MR | MR | Zbl
[29] G.V. Garkavenko, N.B. Uskova, “Spectral analysis of a class of difference operators with growing potential”, Vestnik VGU. Ser. Fiz. Matem., 2016, no. 3, 101–111 (in Russian) | Zbl
[30] G.V. Garkavenko, N.B. Uskova, “The asymptotic of eigenvalues for difference operator with growing potential”, Matem. Fiz. Komp. Model., 20:4 (2017), 6–17 (in Russian) | MR
[31] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Transl. Math. Monog., 18, Amer. Math. Soc., 1969 | DOI | MR
[32] P.D. Hislop, I.M. Sigal, Introduction to spectral theory: with applications to Schrödinger operators, Applied Mathematical Sciences, 113, Springer, 1996 | DOI | MR | Zbl
[33] A.L. Chistyakov, “Defect indices of $J_m$-matrices and of differential operators with polynomial coefficients”, Math. USSR-Sb., 14:4 (1971), 471–500 | DOI | MR | Zbl