@article{UFA_2019_11_3_a0,
author = {A. M. Bikchentaev},
title = {Renormalizations of measurable operator ideal spaces affiliated to semi-finite von {Neumann} algebra},
journal = {Ufa mathematical journal},
pages = {3--10},
year = {2019},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/}
}
A. M. Bikchentaev. Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/
[1] I.E. Segal, “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 ; Matematika (sb. perevodov), 6:1 (1962), 65–132 | DOI | MR | Zbl
[2] A.M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251 | DOI | MR | MR | Zbl
[3] A.F. Ber, G.B. Levitina, V.I. Chilin, “Derivations with values in quasi-normed bimodules of locally measurable operators”, Siberian Adv. Math., 25:3 (2015), 169–178 | DOI | MR
[4] A.M. Bikchentaev, “Triangle inequality for some spaces of measurable operators”, Konstrukt. Teor. Funkt. Funkt. Anal., 8, 1992, 23–32 (in Russian) | MR
[5] A.M. Bikchentaev, “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, 1992, 179–187
[6] M. Takesaki, Theory of operator algebras (Operator Algebras and Non-commutative Geometry V), v. I, Encyclopaedia of Mathematical Sciences, 124, Springer-Verlag, Berlin, 2002 | MR
[7] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal. 1974, 15:2, 103–116 | DOI | MR | Zbl
[8] F.J. Yeadon, “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl
[9] A.M. Bikchentaev, “On a property of $L_p$ spaces on semifinite von Neumann algebras”, Math. Notes, 64:2 (1998), 159–163 | DOI | DOI | MR | Zbl
[10] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | DOI | MR | Zbl
[11] F.J. Yeadon, “Convergence of measurable operators”, Proc. Cambridge Phil. Soc., 74:2 (1973), 257–268 | DOI | MR | Zbl
[12] P.G. Dodds, T.K.-Y. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl
[13] C.A. Akemann, J. Anderson, G.K. Pedersen, “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl
[14] V.I. Chilin, “Triangle inequality in algebra of locally measurable operators”, Matematicheskii analiz i algebra, Collection of scientific works of Tashkent Univ., Tashkent Univ. Publ., Tashkent, 1986, 77–81 (in Russian)
[15] A.M. Bikchentaev, “Minimality of convergence in measure topologies on finite von Neumann algebras”, Math. Notes, 75:3 (2004), 315–321 | DOI | DOI | MR | Zbl
[16] A. Stroh, Grame P. West, “$\tau$-compact operators affiliated to a semifinite von Neumann algebra”, Proc. Roy. Irish Acad. Sect. A, 93:1 (1993), 73–86 | MR | Zbl