Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to non-commutative analogues of classical methods of constructing functional spaces. Let a von Neumann algebra ${\mathcal M}$ of operators act in a Hilbert space $\mathcal{H}$, $\tau$ be a faithful normal semi-finite trace $\mathcal{M}$. Let $ \widetilde{\mathcal{M}}$ be an $\ast$-algebra of $\tau$-measurable operators, $|X|=\sqrt{X^*X}$ for $X \in \widetilde{\mathcal{M}}$. A lineal $\mathcal{E}$ in $\widetilde{\mathcal{M}}$ is called ideal space on $(\mathcal{M}, \tau)$ if 1) $X \in \mathcal{E}$ implies $X^* \in \mathcal{E}$; 2) $X \in \mathcal{E}$, $Y \in \widetilde{\mathcal{M}}$ and $|Y| \leq |X|$ imply $Y \in \mathcal{E}$. Let $\mathcal{E}$, $\mathcal{F}$ be ideal spaces on $(\mathcal{M}, \tau)$. We propose a method of constructing a mapping $\tilde{\rho} \colon \mathcal{E}\to [0, +\infty]$ with nice properties by employing a mapping $\rho$ on a positive cone $\mathcal{E}^+$. At that, if $\mathcal{E}= \mathcal{M}$ and $\rho = \tau$, then $ \tilde{\rho}(X)=\tau (|X|)$ and if the trace $\tau$ is finite, then $ \tilde{\rho}(X)=\|X\|_1$ for all $X\in \mathcal{M}$. We study the case as $\tilde{\rho}(X)$ is equivalent to the original mapping $\rho (|X|)$. Employing mappings on $\mathcal{E}$ and $\mathcal{F}$, we construct a new mapping with nice properties on the sum $\mathcal{E}+\mathcal{F}$. We provide examples of such mappings. The results are new also for $\ast$-algebra $\mathcal{M}=\mathcal{B}(\mathcal{H})$ of all bounded linear operators in $\mathcal{H}$ equipped with a canonical trace $\tau =\mathrm{tr}$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operators, ideal space, renormalization.
@article{UFA_2019_11_3_a0,
     author = {A. M. Bikchentaev},
     title = {Renormalizations of measurable operator ideal spaces affiliated to semi-finite von {Neumann} algebra},
     journal = {Ufa mathematical journal},
     pages = {3--10},
     year = {2019},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
JO  - Ufa mathematical journal
PY  - 2019
SP  - 3
EP  - 10
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/
LA  - en
ID  - UFA_2019_11_3_a0
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
%J Ufa mathematical journal
%D 2019
%P 3-10
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/
%G en
%F UFA_2019_11_3_a0
A. M. Bikchentaev. Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/

[1] I.E. Segal, “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 ; Matematika (sb. perevodov), 6:1 (1962), 65–132 | DOI | MR | Zbl

[2] A.M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251 | DOI | MR | MR | Zbl

[3] A.F. Ber, G.B. Levitina, V.I. Chilin, “Derivations with values in quasi-normed bimodules of locally measurable operators”, Siberian Adv. Math., 25:3 (2015), 169–178 | DOI | MR

[4] A.M. Bikchentaev, “Triangle inequality for some spaces of measurable operators”, Konstrukt. Teor. Funkt. Funkt. Anal., 8, 1992, 23–32 (in Russian) | MR

[5] A.M. Bikchentaev, “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, 1992, 179–187

[6] M. Takesaki, Theory of operator algebras (Operator Algebras and Non-commutative Geometry V), v. I, Encyclopaedia of Mathematical Sciences, 124, Springer-Verlag, Berlin, 2002 | MR

[7] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal. 1974, 15:2, 103–116 | DOI | MR | Zbl

[8] F.J. Yeadon, “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[9] A.M. Bikchentaev, “On a property of $L_p$ spaces on semifinite von Neumann algebras”, Math. Notes, 64:2 (1998), 159–163 | DOI | DOI | MR | Zbl

[10] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | DOI | MR | Zbl

[11] F.J. Yeadon, “Convergence of measurable operators”, Proc. Cambridge Phil. Soc., 74:2 (1973), 257–268 | DOI | MR | Zbl

[12] P.G. Dodds, T.K.-Y. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl

[13] C.A. Akemann, J. Anderson, G.K. Pedersen, “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[14] V.I. Chilin, “Triangle inequality in algebra of locally measurable operators”, Matematicheskii analiz i algebra, Collection of scientific works of Tashkent Univ., Tashkent Univ. Publ., Tashkent, 1986, 77–81 (in Russian)

[15] A.M. Bikchentaev, “Minimality of convergence in measure topologies on finite von Neumann algebras”, Math. Notes, 75:3 (2004), 315–321 | DOI | DOI | MR | Zbl

[16] A. Stroh, Grame P. West, “$\tau$-compact operators affiliated to a semifinite von Neumann algebra”, Proc. Roy. Irish Acad. Sect. A, 93:1 (1993), 73–86 | MR | Zbl