Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to non-commutative analogues of classical methods of constructing functional spaces. Let a von Neumann algebra ${\mathcal M}$ of operators act in a Hilbert space $\mathcal{H}$, $\tau$ be a faithful normal semi-finite trace $\mathcal{M}$. Let $ \widetilde{\mathcal{M}}$ be an $\ast$-algebra of $\tau$-measurable operators, $|X|=\sqrt{X^*X}$ for $X \in \widetilde{\mathcal{M}}$. A lineal $\mathcal{E}$ in $\widetilde{\mathcal{M}}$ is called ideal space on $(\mathcal{M}, \tau)$ if 1) $X \in \mathcal{E}$ implies $X^* \in \mathcal{E}$; 2) $X \in \mathcal{E}$, $Y \in \widetilde{\mathcal{M}}$ and $|Y| \leq |X|$ imply $Y \in \mathcal{E}$. Let $\mathcal{E}$, $\mathcal{F}$ be ideal spaces on $(\mathcal{M}, \tau)$. We propose a method of constructing a mapping $\tilde{\rho} \colon \mathcal{E}\to [0, +\infty]$ with nice properties by employing a mapping $\rho$ on a positive cone $\mathcal{E}^+$. At that, if $\mathcal{E}= \mathcal{M}$ and $\rho = \tau$, then $ \tilde{\rho}(X)=\tau (|X|)$ and if the trace $\tau$ is finite, then $ \tilde{\rho}(X)=\|X\|_1$ for all $X\in \mathcal{M}$. We study the case as $\tilde{\rho}(X)$ is equivalent to the original mapping $\rho (|X|)$. Employing mappings on $\mathcal{E}$ and $\mathcal{F}$, we construct a new mapping with nice properties on the sum $\mathcal{E}+\mathcal{F}$. We provide examples of such mappings. The results are new also for $\ast$-algebra $\mathcal{M}=\mathcal{B}(\mathcal{H})$ of all bounded linear operators in $\mathcal{H}$ equipped with a canonical trace $\tau =\mathrm{tr}$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operators, ideal space, renormalization.
@article{UFA_2019_11_3_a0,
     author = {A. M. Bikchentaev},
     title = {Renormalizations of measurable operator ideal spaces affiliated to semi-finite von {Neumann} algebra},
     journal = {Ufa mathematical journal},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
JO  - Ufa mathematical journal
PY  - 2019
SP  - 3
EP  - 10
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/
LA  - en
ID  - UFA_2019_11_3_a0
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra
%J Ufa mathematical journal
%D 2019
%P 3-10
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/
%G en
%F UFA_2019_11_3_a0
A. M. Bikchentaev. Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra. Ufa mathematical journal, Tome 11 (2019) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2019_11_3_a0/