@article{UFA_2019_11_2_a7,
author = {R. G. Salakhudinov},
title = {Some properties of functionals on level sets},
journal = {Ufa mathematical journal},
pages = {114--124},
year = {2019},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a7/}
}
R. G. Salakhudinov. Some properties of functionals on level sets. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 114-124. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a7/
[1] R.G. Salakhudinov, “Integral properties of the classical warping function of a simply connected domain”, Math. Notes, 92:3 (2012), 412–421 | DOI | DOI | MR | Zbl
[2] F.G. Avkhadiev, “Solution of the generalized Saint Venant problem”, Sb. Math., 189:12 (1998), 1739–1748 | DOI | DOI | MR | Zbl
[3] F.G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl
[4] R. Bañuelos, M. van den Berg, T. Carroll, “Torsional rigidity and expected lifetime of brownian motion”, J. London Math. Soc. (2), 66 (2002), 499–512 | DOI | MR
[5] R.G. Salakhudinov, “Two-sided estimates for the Lp-norms of the stress function for convex domains in $\mathbb{R}^n$”, Russ. Math. Iz. VUZ, 50:3 (2006), 39–46 | MR | Zbl
[6] L.E. Payne, “Some inequalities in the torsion problem for multiply connected regions”, Studies in Mathematical analysis and Related Topics, Essays in honor of G. Pólya, Stanford University Press, Stanford, California, 1962, 270–280 | MR
[7] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. Math. Stud., 27, Princeton Univ. Press, Princeton, 1951 | MR | Zbl
[8] C. Bandle, Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl
[9] R.G. Salakhudinov, “Refined inequalities for euclidian moments of a domain with respect to its boundary”, SIAM J. Math. Anal., 44:4 (2012), 2949–2961 | DOI | MR | Zbl
[10] R.G. Salakhudinov, “Isoperimetric properties of Euclidean boundary moments of a simply connected domain”, Russ. Math. Iz. VUZ, 57:8 (2013), 57–69 | DOI | MR | Zbl
[11] R.G. Salakhudinov, “Isoperimetric inequalities for $l^p$-norms of the stress function of a multiply connected plane domain”, Russ. Math. Iz. VUZ, 57:9 (2013), 62–66 | DOI | MR | Zbl
[12] R.G. Salahudinov., “Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary”, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 148, no. 2, 2006, 151–162 (in Russian) | Zbl
[13] J. Maly, D. Swanson, W. Ziemer, “The coarea formula for sobolev mappings”, Trans. Amer. Math. Soc., 355:01 (2002), 477–492 | MR
[14] R.G. Salakhudinov, “Payne type inequalities for $l^p$-norms of the warping functions”, J. Math. Anal. Appl., 410:2 (2014), 659–669 | DOI | MR | Zbl