Mots-clés : slow diffusion equation, uniform convergence
@article{UFA_2019_11_2_a1,
author = {A. K. Bazzaev and I. D. Tsopanov},
title = {Difference schemes for partial differential equations of fractional order},
journal = {Ufa mathematical journal},
pages = {19--33},
year = {2019},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a1/}
}
A. K. Bazzaev; I. D. Tsopanov. Difference schemes for partial differential equations of fractional order. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 19-33. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a1/
[1] V.E. Tarasov, Models in theoretical physics with integro-differentiation of fractional order, Izhevskij Inst. Komp. Issl., Izhevsk, 2011 (in Russian)
[2] V.Kh. Shogenov, A.A. Akhkubekov, R.A. Akhkubekov, “Method of fracional differentiation in theory of Brownian motion”, Izv. VUZov. Sever.-Kavkaz. Region, 2004, no. 1, 46–49 (in Russian)
[3] F. Mainardi, Y. Luchko, G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4:2 (2002), 153–192 | MR
[4] E. Scalas, R. Gorenflo, F. Mainardi, “Uncoupled continuous-time random walks: solution and limiting behaviour of the master equation”, Phys. Rev. E, 69 (2004), 011107, 8 pp. | DOI | MR
[5] Y. Zhang, D.A. Benson, M.M. Meerschaert, H.P. Scheffler, “On using random walks to solve the space fractional advectiona-dispersion equations”, J. Stst. Phys., 123:1 (2006), 89–110 | MR | Zbl
[6] N.G. Abrashina-Zhadaeva, I.A. Timoshchenko, “Finite-difference schemes for a diffusion equation with fractional derivatives in a multidimensional domain”, Diff. Equat., 49:7 (2013), 789–795 | DOI | MR | Zbl
[7] O.Yu. Dinariev, “Flow in a fractured medium with fractal fracture geometry”, Fluid Dyn., 25:5 (1990), 704–708 | DOI | MR | Zbl
[8] V.L. Kobelev, Ya.L. Kobelev, E.P. Romanov, “Non-Debye relaxation and diffusion in a fractal space”, Dokl. Phys., 43:8 (1998), 487–490 | MR | Zbl
[9] Ya.L. Kobelev, L.Ya. Kobelev, E.P. Romanov, “Self-maintained processes in the case of nonlinear fractal diffusion”, Dokl. Phys., 44:11 (1999), 752–753 | Zbl
[10] A.N. Kochubei, “Fractional-order diffusion”, Differ. Equat., 26:4 (1990), 485–492 | MR | Zbl
[11] V.Kh. Shogenov, S.K. Kumykova, M. Kh. Shkhanukov-Lafishev, Dokl. Adyg. Mezhd. Akad. Nauk, 2:1 (1996), 43–45 (in Russian)
[12] G.I. Barenblatt, Yu.P. Zheltov, “Fundamental equations of filtration of homogeneous liquids in fissured rocks”, Sov. Phys. Dokl., 5 (1960), 522–525 | Zbl
[13] R.R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi B, 133 (1986), 425–430 | DOI
[14] K.V. Chukbar, “Stochastic transport and fractional derivatives”, J. Exp. Theor. Phys., 81:5 (1995), 1025–1029
[15] V.M. Goloviznin, I.A. Korotkin, “Numerical methods for some one-dimensional equations with fractional derivatives”, Diff. Equat., 42:7 (2006), 967–973 | DOI | MR | Zbl
[16] R.R. Nigmatullin, “Relaxation features of systems with residual memory”, Phys. Solid State, 27:5 (1985), 1583–1585 (in Russian)
[17] V.M. Goloviznin, V.P. Kiselev. I.A. Korotkin, Numerical methods of solving diffusion equation with a fractional derivative in one-dimensional case, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003 (in Russian)
[18] V.M. Goloviznin, V.P. Kiselev. I.A. Korotkin, Yu.P. Yurkov, “Direct problems of classical transfer of radionuclides in geological formations”, Izv. RAN. Energ., 2004, no. 4, 121–130 (in Russian)
[19] A.M. Nakhushev, Fractional calculus and its application, Fizmatgiz, M., 2003 (in Russian)
[20] V.V. Uchaikin, “Anomalous diffusion of particles with a finite free-motion velocity”, Theor. Math. Phys., 115:1 (1998) | DOI | DOI | MR | Zbl
[21] V.Yu. Zaburdaev, K.V. Chukbar, “Enhanced superdiffusion and finite velocity of Levy flights”, J. Exp. Theor. Phys., 94:2 (2002), 252–259 | DOI
[22] J. Klafter, M.F. Shlesinger, G. Zumofen, “Beyond Brownian Motion”, Phys. Today, 49:2 (1996), 33–39 | DOI
[23] Bangti Jin, Raytcho Lazarov, Zhi Zhou, “A Petrov-Galerkin finite element method for fractional convection-diffusion equations”, SIAM J. Nummer. Anal., 54:1 (2014), 481–503 | MR
[24] Bangti Jin, Raytcho Lazarov, Josef Pasciak, Zhi Zhou, “Error analysis of a finite element method for the space-fractional parabolic equation”, SIAM J. Nummer. Anal., 52:5 (2016), 2272–2294 | MR
[25] B. Jin, R. Lazarov, Z. Zhou, “An analysis of the $L_1$ scheme for the subdiffusion equation with nonsmoothdata”, IMA J. Numer. Anal., 36:1 (2016), 197–221 | MR | Zbl
[26] M.M. Lafisheva, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional difference schemes for the fractional order diffusion equation”, Comp. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl
[27] A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, “Locally-one-dimensional scheme for fractional diffusion equation with Robin boundary conditions”, Comp. Math. Math. Phys., 50:7 (2010), 1141–1149 | DOI | MR | Zbl
[28] A.K. Bazzaev, A.V. Mambetova, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity”, Zhurn. Vychisl. Matem. Matem. Fiz., 52:9 (2012), 1656–1665 (in Russian) | Zbl
[29] A.K. Bazzaev, “Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain”, Ufa Math. J., 5:1 (2013), 11–16 | DOI | MR
[30] A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain”, Comput. Math. Math. Phys., 56:1 (2016), 106–115 | DOI | DOI | MR | Zbl
[31] A.A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219 (2012), 3938–3946 | MR | Zbl
[32] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl
[33] K. Diethelm, N.J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265 (2002), 229–248 | DOI | MR | Zbl
[34] Yu. Povstenko, “Axisymmetric Solutions to Fractional Diffusion-Wave Equation in a Cylinder Under Robin Boundary Condition”, Eur. Phys. J.-Spec., 222:8 (2013), 1767–1777 | DOI | MR
[35] Yu. Povstenko, “Time-Fractional Heat Conduction in an Infinite Medium with a Spherical Hole Under Robin Boundary Condition”, Fract. Calc. Appl. Anal., 16:2 (2013), 354–369 | DOI | MR | Zbl
[36] Ch. Tadjeran, M. Meerschaert, H. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation”, J. of Comput. Phys., 213 (2006), 205–213 | DOI | MR | Zbl
[37] Yu. Luchko, “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. Appl., 351 (2009), 218–223 | DOI | MR | Zbl
[38] Yu. Luchko, “Boundary Value Problems For The Generalized Time-Fractional Diffusion Equation Of Distributed Order”, Fract. Calc. Appl. Anal., 12:4 (2009), 409–422 | MR | Zbl
[39] Yu. Luchko, “Maximum principle and its application for the time-fractional diffusion equations”, Fract. Calc. Appl. Anal., 14:1 (2011), 409–422 | MR
[40] Yu. Luchko, “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equatio”, Comput. and Math. with Applicat., 59 (2010), 1766–1772 | DOI | MR | Zbl
[41] Juan J. Nieto, “Maximum principles for fractional differential equations derived from Mittag-Leffler functions”, Applied Mathematics Letters, 23 (2010), 1248–1251 | DOI | MR | Zbl
[42] H. Ye, F. Liu, V. Anh, I. Turner, “Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations”, Appl. Math. Comput., 227 (2014), 531–540 | MR | Zbl
[43] A. K. Bazzaev, M. Kh. Shhanukov-Lafishev, “On the convergence of difference schemes for fractional differential equations with Robin boundary conditions”, Comput. Math. Math. Phys., 57:1 (2017), 133–144 | DOI | DOI | MR | Zbl
[44] F.I. Taukenova, M.Kh. Shkhanukov-Lafishev, “Difference methods for solving boundary value problems for fractional differential equations”, Comp. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR
[45] A.A. Alikhanov, “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Comput. Math. Math. Phys., 56:4 (2016), 561–575 | DOI | DOI | MR | Zbl
[46] A.K. Bazzaev, “Robin boundary value problem for a generalized parabolic equations with a fractional derivative in time in a multi-dimensional domain”, Vestnik VGU. Ser. Fiz. Matem., 2010, no. 2, 5–14 (in Russian) | Zbl
[47] A.A. Samarski, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | MR | Zbl
[48] A.A. Samarskii, A.V. Gulin, Stability of finite-difference schemes, Nauka, M., 1973 (in Russian)
[49] A.N. Tikhonov, A.A. Samarskii, Equations of mathematical physics, Int. Ser. Monog. Pure Appl. Math., 39, Pergamon Press, Oxford, 1963 | MR | MR | Zbl
[50] A.A. Samarskii, “On one boundary value problem on heat conduction”, Izbran. tr. A.A. Samarskogo, Maks Press, M., 2003, 1–22 (in Russian) | MR
[51] S.V. Nerpin, A.F. Chudnovsky, Energy- and mass-transfer in a system plant-soil-air, Gidrometeoizdat, L., 1975 (in Russian)