Difference schemes for partial differential equations of fractional order
Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 19-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nowadays, fractional differential equations arise while describing physical systems with such properties as power nonlocality, long-term memory and fractal property. The order of the fractional derivative is determined by the dimension of the fractal. Fractional mathematical calculus in the theory of fractals and physical systems with memory and non-locality becomes as important as classical analysis in continuum mechanics. In this paper we consider higher order difference schemes of approximation for differential equations with fractional-order derivatives with respect to both spatial and time variables. Using the maximum principle, we obtain apriori estimates and prove the stability and the uniform convergence of difference schemes.
Keywords: initial-boundary value problem, fractional differential equations, Caputo fractional derivative, stability, difference scheme, maximum principle, stability, apriori estimate, heat capacity concentrated at the boundary.
Mots-clés : slow diffusion equation, uniform convergence
@article{UFA_2019_11_2_a1,
     author = {A. K. Bazzaev and I. D. Tsopanov},
     title = {Difference schemes for partial differential equations of fractional order},
     journal = {Ufa mathematical journal},
     pages = {19--33},
     year = {2019},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a1/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - I. D. Tsopanov
TI  - Difference schemes for partial differential equations of fractional order
JO  - Ufa mathematical journal
PY  - 2019
SP  - 19
EP  - 33
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a1/
LA  - en
ID  - UFA_2019_11_2_a1
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A I. D. Tsopanov
%T Difference schemes for partial differential equations of fractional order
%J Ufa mathematical journal
%D 2019
%P 19-33
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a1/
%G en
%F UFA_2019_11_2_a1
A. K. Bazzaev; I. D. Tsopanov. Difference schemes for partial differential equations of fractional order. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 19-33. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a1/

[1] V.E. Tarasov, Models in theoretical physics with integro-differentiation of fractional order, Izhevskij Inst. Komp. Issl., Izhevsk, 2011 (in Russian)

[2] V.Kh. Shogenov, A.A. Akhkubekov, R.A. Akhkubekov, “Method of fracional differentiation in theory of Brownian motion”, Izv. VUZov. Sever.-Kavkaz. Region, 2004, no. 1, 46–49 (in Russian)

[3] F. Mainardi, Y. Luchko, G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4:2 (2002), 153–192 | MR

[4] E. Scalas, R. Gorenflo, F. Mainardi, “Uncoupled continuous-time random walks: solution and limiting behaviour of the master equation”, Phys. Rev. E, 69 (2004), 011107, 8 pp. | DOI | MR

[5] Y. Zhang, D.A. Benson, M.M. Meerschaert, H.P. Scheffler, “On using random walks to solve the space fractional advectiona-dispersion equations”, J. Stst. Phys., 123:1 (2006), 89–110 | MR | Zbl

[6] N.G. Abrashina-Zhadaeva, I.A. Timoshchenko, “Finite-difference schemes for a diffusion equation with fractional derivatives in a multidimensional domain”, Diff. Equat., 49:7 (2013), 789–795 | DOI | MR | Zbl

[7] O.Yu. Dinariev, “Flow in a fractured medium with fractal fracture geometry”, Fluid Dyn., 25:5 (1990), 704–708 | DOI | MR | Zbl

[8] V.L. Kobelev, Ya.L. Kobelev, E.P. Romanov, “Non-Debye relaxation and diffusion in a fractal space”, Dokl. Phys., 43:8 (1998), 487–490 | MR | Zbl

[9] Ya.L. Kobelev, L.Ya. Kobelev, E.P. Romanov, “Self-maintained processes in the case of nonlinear fractal diffusion”, Dokl. Phys., 44:11 (1999), 752–753 | Zbl

[10] A.N. Kochubei, “Fractional-order diffusion”, Differ. Equat., 26:4 (1990), 485–492 | MR | Zbl

[11] V.Kh. Shogenov, S.K. Kumykova, M. Kh. Shkhanukov-Lafishev, Dokl. Adyg. Mezhd. Akad. Nauk, 2:1 (1996), 43–45 (in Russian)

[12] G.I. Barenblatt, Yu.P. Zheltov, “Fundamental equations of filtration of homogeneous liquids in fissured rocks”, Sov. Phys. Dokl., 5 (1960), 522–525 | Zbl

[13] R.R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi B, 133 (1986), 425–430 | DOI

[14] K.V. Chukbar, “Stochastic transport and fractional derivatives”, J. Exp. Theor. Phys., 81:5 (1995), 1025–1029

[15] V.M. Goloviznin, I.A. Korotkin, “Numerical methods for some one-dimensional equations with fractional derivatives”, Diff. Equat., 42:7 (2006), 967–973 | DOI | MR | Zbl

[16] R.R. Nigmatullin, “Relaxation features of systems with residual memory”, Phys. Solid State, 27:5 (1985), 1583–1585 (in Russian)

[17] V.M. Goloviznin, V.P. Kiselev. I.A. Korotkin, Numerical methods of solving diffusion equation with a fractional derivative in one-dimensional case, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003 (in Russian)

[18] V.M. Goloviznin, V.P. Kiselev. I.A. Korotkin, Yu.P. Yurkov, “Direct problems of classical transfer of radionuclides in geological formations”, Izv. RAN. Energ., 2004, no. 4, 121–130 (in Russian)

[19] A.M. Nakhushev, Fractional calculus and its application, Fizmatgiz, M., 2003 (in Russian)

[20] V.V. Uchaikin, “Anomalous diffusion of particles with a finite free-motion velocity”, Theor. Math. Phys., 115:1 (1998) | DOI | DOI | MR | Zbl

[21] V.Yu. Zaburdaev, K.V. Chukbar, “Enhanced superdiffusion and finite velocity of Levy flights”, J. Exp. Theor. Phys., 94:2 (2002), 252–259 | DOI

[22] J. Klafter, M.F. Shlesinger, G. Zumofen, “Beyond Brownian Motion”, Phys. Today, 49:2 (1996), 33–39 | DOI

[23] Bangti Jin, Raytcho Lazarov, Zhi Zhou, “A Petrov-Galerkin finite element method for fractional convection-diffusion equations”, SIAM J. Nummer. Anal., 54:1 (2014), 481–503 | MR

[24] Bangti Jin, Raytcho Lazarov, Josef Pasciak, Zhi Zhou, “Error analysis of a finite element method for the space-fractional parabolic equation”, SIAM J. Nummer. Anal., 52:5 (2016), 2272–2294 | MR

[25] B. Jin, R. Lazarov, Z. Zhou, “An analysis of the $L_1$ scheme for the subdiffusion equation with nonsmoothdata”, IMA J. Numer. Anal., 36:1 (2016), 197–221 | MR | Zbl

[26] M.M. Lafisheva, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional difference schemes for the fractional order diffusion equation”, Comp. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl

[27] A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, “Locally-one-dimensional scheme for fractional diffusion equation with Robin boundary conditions”, Comp. Math. Math. Phys., 50:7 (2010), 1141–1149 | DOI | MR | Zbl

[28] A.K. Bazzaev, A.V. Mambetova, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity”, Zhurn. Vychisl. Matem. Matem. Fiz., 52:9 (2012), 1656–1665 (in Russian) | Zbl

[29] A.K. Bazzaev, “Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain”, Ufa Math. J., 5:1 (2013), 11–16 | DOI | MR

[30] A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain”, Comput. Math. Math. Phys., 56:1 (2016), 106–115 | DOI | DOI | MR | Zbl

[31] A.A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219 (2012), 3938–3946 | MR | Zbl

[32] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl

[33] K. Diethelm, N.J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265 (2002), 229–248 | DOI | MR | Zbl

[34] Yu. Povstenko, “Axisymmetric Solutions to Fractional Diffusion-Wave Equation in a Cylinder Under Robin Boundary Condition”, Eur. Phys. J.-Spec., 222:8 (2013), 1767–1777 | DOI | MR

[35] Yu. Povstenko, “Time-Fractional Heat Conduction in an Infinite Medium with a Spherical Hole Under Robin Boundary Condition”, Fract. Calc. Appl. Anal., 16:2 (2013), 354–369 | DOI | MR | Zbl

[36] Ch. Tadjeran, M. Meerschaert, H. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation”, J. of Comput. Phys., 213 (2006), 205–213 | DOI | MR | Zbl

[37] Yu. Luchko, “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. Appl., 351 (2009), 218–223 | DOI | MR | Zbl

[38] Yu. Luchko, “Boundary Value Problems For The Generalized Time-Fractional Diffusion Equation Of Distributed Order”, Fract. Calc. Appl. Anal., 12:4 (2009), 409–422 | MR | Zbl

[39] Yu. Luchko, “Maximum principle and its application for the time-fractional diffusion equations”, Fract. Calc. Appl. Anal., 14:1 (2011), 409–422 | MR

[40] Yu. Luchko, “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equatio”, Comput. and Math. with Applicat., 59 (2010), 1766–1772 | DOI | MR | Zbl

[41] Juan J. Nieto, “Maximum principles for fractional differential equations derived from Mittag-Leffler functions”, Applied Mathematics Letters, 23 (2010), 1248–1251 | DOI | MR | Zbl

[42] H. Ye, F. Liu, V. Anh, I. Turner, “Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations”, Appl. Math. Comput., 227 (2014), 531–540 | MR | Zbl

[43] A. K. Bazzaev, M. Kh. Shhanukov-Lafishev, “On the convergence of difference schemes for fractional differential equations with Robin boundary conditions”, Comput. Math. Math. Phys., 57:1 (2017), 133–144 | DOI | DOI | MR | Zbl

[44] F.I. Taukenova, M.Kh. Shkhanukov-Lafishev, “Difference methods for solving boundary value problems for fractional differential equations”, Comp. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR

[45] A.A. Alikhanov, “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Comput. Math. Math. Phys., 56:4 (2016), 561–575 | DOI | DOI | MR | Zbl

[46] A.K. Bazzaev, “Robin boundary value problem for a generalized parabolic equations with a fractional derivative in time in a multi-dimensional domain”, Vestnik VGU. Ser. Fiz. Matem., 2010, no. 2, 5–14 (in Russian) | Zbl

[47] A.A. Samarski, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | MR | Zbl

[48] A.A. Samarskii, A.V. Gulin, Stability of finite-difference schemes, Nauka, M., 1973 (in Russian)

[49] A.N. Tikhonov, A.A. Samarskii, Equations of mathematical physics, Int. Ser. Monog. Pure Appl. Math., 39, Pergamon Press, Oxford, 1963 | MR | MR | Zbl

[50] A.A. Samarskii, “On one boundary value problem on heat conduction”, Izbran. tr. A.A. Samarskogo, Maks Press, M., 2003, 1–22 (in Russian) | MR

[51] S.V. Nerpin, A.F. Chudnovsky, Energy- and mass-transfer in a system plant-soil-air, Gidrometeoizdat, L., 1975 (in Russian)