Mots-clés : Poincaré metric
@article{UFA_2019_11_2_a0,
author = {F. G. Avkhadiev and R. G. Nasibullin and I. K. Shafigullin},
title = {Conformal invariants of hyperbolic planar domains},
journal = {Ufa mathematical journal},
pages = {3--18},
year = {2019},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a0/}
}
F. G. Avkhadiev; R. G. Nasibullin; I. K. Shafigullin. Conformal invariants of hyperbolic planar domains. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a0/
[1] L.V. Ahlfors, Conformal invariants. Topics in Geometric Function Theory, McGraw-Hill, New Yourk, 1973, 160 pp. | MR | Zbl
[2] F.G. Avkhadiev, K.-J. Wirths, Schwarz-Pick Type Inequalities, Birkhäuser Verlag, Basel–Boston–Berlin, 2009, 156 pp. | MR | Zbl
[3] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32:1 (1979), 192–199 | DOI | MR | Zbl
[4] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | DOI | MR | Zbl
[5] J.L. Fernández, “Domains with Strong Barrier”, Revista Matemática Iberoamericana, 5:2 (1989), 47–65 | MR | Zbl
[6] J.L. Fernández, J.M. Rodríguez, “The exponent of convergence of Riemann surfaces, bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Series A. I. Mathematica, 15 (1990), 165–183 | DOI | MR | Zbl
[7] F.G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl
[8] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255 (2006), 2–12 | DOI | MR | Zbl
[9] F.G. Avkhadiev, “Integral inequalities in domains of hyperbolic type and their applications”, Sb. Math., 206:12 (2015), 1657–1681 | DOI | DOI | MR | Zbl
[10] F.G. Avkhadiev, R.G. Nasibullin, I.K. Shafigullin, “$L_p$-versions of one conformally invariant inequality”, Russian Math. (Iz. VUZ), 62:8 (2018), 76–79 | DOI | MR | Zbl
[11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl
[12] F.G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8–9 (2007), 632–642 | DOI | MR | Zbl
[13] F.G. Avkhadiev, K.-J. Wirths, “Weighted Hardy inequalities with sharp constants”, Lobachevskii J. Math., 31:1 (2010), 1–7 | DOI | MR | Zbl
[14] F.G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | MR | Zbl
[15] F.G. Avkhadiev, K.-J. Wirths, “On the best constants for the Brezis-Marcus inequalities in balls”, J. Math. Analysis and Applications, 396:2 (2012), 473–480 | DOI | MR | Zbl
[16] F.G. Avkhadiev, I.K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russian Mathematics, 58:2 (2014), 58–61 | DOI | MR | Zbl
[17] F.G. Avkhadiev, R.G. Nasibullin, “Hardy-type inequalities in arbitrary domains with finite inner radius”, Siberian Math. J., 55:2 (2014), 191–200 | DOI | MR | Zbl
[18] A.A. Balinsky, W.D. Evans, R.T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Heidelberg–New York–Dordrecht–London, 2015 | DOI | MR | Zbl
[19] R.G. Nasibullin, “Sharp Hardy type inequalities with weights depending on Bessel function”, Ufa Math. J., 9:1 (2017), 89–97 | DOI | MR
[20] I.K. Shafigullin, “Lower bound for the Hardy constant for an arbitrary domain in $\mathbb{R}^n$”, Ufa Math. J., 9:2 (2017), 102–108 | DOI | MR
[21] S.L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monog., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl
[22] V.G. Maz'ya, Sobolev spaces, Springer, 1985, 488 pp. | MR | Zbl
[23] V.M. Miklyukov, M.K. Vuorinen, “Hardy's inequality for $W_0^{1,p}$-functions on Riemanni an manifolds”, Proc. Amer. Math. Soc., 127:9 (1999), 2745–2754 | DOI | MR | Zbl
[24] V. Alvarez, D. Pestana, J.M. Rodríguez, “Isoperimetric inequalities in Riemann surfaces of infinite type”, Revista Matemática Iberoamericana, 15:2 (1999), 353–425 | DOI | MR