Conformal invariants of hyperbolic planar domains
Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider planar hyperbolic domains and conformally invariant functionals defined as sharp constants for Hardy type inequalities. We study relationships between these functionals and optimal constants in hyperbolic isoperimetric inequalities. The studied Hardy type inequalities involve weight functions depending on a hyperbolic radius of a domain and are conformally invariant. We prove that the positivity of Hardy constants is connected with existence of some hyperbolic isoperimetric inequalities of a special kind. We also prove a comparison theorem for Hardy constants with different numerical parameters and we study the relationships between the linear hyperbolic isoperimetric inequality in a domain and Euclidean maximum modulus of this domain. In the proofs, an essential role is played by characteristics of domains with uniformly perfect boundary. In addition, we generalize certain results from the papers J.L. Fernández, J.M. Rodríguez, “The exponent of convergence of Riemann surfaces, bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Series A. I. Mathematica. 15, 165–183 (1990); V. Alvarez, D. Pestana, J.M. Rodríguez, “Isoperimetric inequalities in Riemann surfaces of infinite type”, Revista Matemática Iberoamericana, 15:2, 353–425 (1999).
Keywords: hyperbolic isoperimetric inequality, uniformly perfect set, Hardy type inequality.
Mots-clés : Poincaré metric
@article{UFA_2019_11_2_a0,
     author = {F. G. Avkhadiev and R. G. Nasibullin and I. K. Shafigullin},
     title = {Conformal invariants of hyperbolic planar domains},
     journal = {Ufa mathematical journal},
     pages = {3--18},
     year = {2019},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - R. G. Nasibullin
AU  - I. K. Shafigullin
TI  - Conformal invariants of hyperbolic planar domains
JO  - Ufa mathematical journal
PY  - 2019
SP  - 3
EP  - 18
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a0/
LA  - en
ID  - UFA_2019_11_2_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A R. G. Nasibullin
%A I. K. Shafigullin
%T Conformal invariants of hyperbolic planar domains
%J Ufa mathematical journal
%D 2019
%P 3-18
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a0/
%G en
%F UFA_2019_11_2_a0
F. G. Avkhadiev; R. G. Nasibullin; I. K. Shafigullin. Conformal invariants of hyperbolic planar domains. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a0/

[1] L.V. Ahlfors, Conformal invariants. Topics in Geometric Function Theory, McGraw-Hill, New Yourk, 1973, 160 pp. | MR | Zbl

[2] F.G. Avkhadiev, K.-J. Wirths, Schwarz-Pick Type Inequalities, Birkhäuser Verlag, Basel–Boston–Berlin, 2009, 156 pp. | MR | Zbl

[3] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32:1 (1979), 192–199 | DOI | MR | Zbl

[4] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | DOI | MR | Zbl

[5] J.L. Fernández, “Domains with Strong Barrier”, Revista Matemática Iberoamericana, 5:2 (1989), 47–65 | MR | Zbl

[6] J.L. Fernández, J.M. Rodríguez, “The exponent of convergence of Riemann surfaces, bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Series A. I. Mathematica, 15 (1990), 165–183 | DOI | MR | Zbl

[7] F.G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[8] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255 (2006), 2–12 | DOI | MR | Zbl

[9] F.G. Avkhadiev, “Integral inequalities in domains of hyperbolic type and their applications”, Sb. Math., 206:12 (2015), 1657–1681 | DOI | DOI | MR | Zbl

[10] F.G. Avkhadiev, R.G. Nasibullin, I.K. Shafigullin, “$L_p$-versions of one conformally invariant inequality”, Russian Math. (Iz. VUZ), 62:8 (2018), 76–79 | DOI | MR | Zbl

[11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[12] F.G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8–9 (2007), 632–642 | DOI | MR | Zbl

[13] F.G. Avkhadiev, K.-J. Wirths, “Weighted Hardy inequalities with sharp constants”, Lobachevskii J. Math., 31:1 (2010), 1–7 | DOI | MR | Zbl

[14] F.G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | MR | Zbl

[15] F.G. Avkhadiev, K.-J. Wirths, “On the best constants for the Brezis-Marcus inequalities in balls”, J. Math. Analysis and Applications, 396:2 (2012), 473–480 | DOI | MR | Zbl

[16] F.G. Avkhadiev, I.K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russian Mathematics, 58:2 (2014), 58–61 | DOI | MR | Zbl

[17] F.G. Avkhadiev, R.G. Nasibullin, “Hardy-type inequalities in arbitrary domains with finite inner radius”, Siberian Math. J., 55:2 (2014), 191–200 | DOI | MR | Zbl

[18] A.A. Balinsky, W.D. Evans, R.T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Heidelberg–New York–Dordrecht–London, 2015 | DOI | MR | Zbl

[19] R.G. Nasibullin, “Sharp Hardy type inequalities with weights depending on Bessel function”, Ufa Math. J., 9:1 (2017), 89–97 | DOI | MR

[20] I.K. Shafigullin, “Lower bound for the Hardy constant for an arbitrary domain in $\mathbb{R}^n$”, Ufa Math. J., 9:2 (2017), 102–108 | DOI | MR

[21] S.L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monog., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl

[22] V.G. Maz'ya, Sobolev spaces, Springer, 1985, 488 pp. | MR | Zbl

[23] V.M. Miklyukov, M.K. Vuorinen, “Hardy's inequality for $W_0^{1,p}$-functions on Riemanni an manifolds”, Proc. Amer. Math. Soc., 127:9 (1999), 2745–2754 | DOI | MR | Zbl

[24] V. Alvarez, D. Pestana, J.M. Rodríguez, “Isoperimetric inequalities in Riemann surfaces of infinite type”, Revista Matemática Iberoamericana, 15:2 (1999), 353–425 | DOI | MR