Mots-clés : Volterra chain
@article{UFA_2019_11_1_a4,
author = {R. Ch. Kulaev and A. B. Shabat},
title = {Conservation laws for {Volterra} chain with initial step-like condition},
journal = {Ufa mathematical journal},
pages = {63--69},
year = {2019},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a4/}
}
R. Ch. Kulaev; A. B. Shabat. Conservation laws for Volterra chain with initial step-like condition. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 63-69. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a4/
[1] V. Volterra, Lecóns sur la théorie mathematique de la lutte pour la vie, Gauthiers-Villars, Paris, 1931 | MR
[2] B.G. Konopelchenko, G. G.Ortenzi, “Parabolic regularization of the gradient catastrophes for the Burgers-Hopf equation and Jordan chain”, J. Phys. A: Math. Theor., 51:27 (2018), 201–220 | DOI | MR
[3] R.N. Garifullin, A.B. Shabat, “The structure of polynomial conservation laws”, Theoret. Math. Phys., 161:3 (2009), 1590–1598 | DOI | MR | Zbl
[4] V.L. Vereshchagin, “Asimptotic behaviour of the solution of the Cauchy problem for the Volterra chain with step-like initial data”, Theor. Math. Phys., 111:3 (1997), 658–666 | DOI | DOI | MR | Zbl
[5] V.V. Kozlov, D.V. Treschev, “Polynomial integrals of Hamiltonian systems with exponential interaction”, Math. USSR-Izv., 34:3 (1990), 555–574 | DOI | MR | Zbl | Zbl
[6] A.I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl
[7] S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of solitons. The inverse scattering method, Contem. Soviet Math., Plenum Publ. Corp., New York, 1984 | MR | MR | Zbl
[8] A.V. Gurevich, L.P. Pitayevskii, “Nonstationary structure of a collisionless shock wave”, Soviet Phys.-JETP, 38:2 (1974), 291–297
[9] B.A. Dubrovin, S.P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl
[10] I.T. Habibullin, “Symmetries of boundary problems”, Phys. Lett. A, 178:5 (1993), 369–375 | DOI | MR