Conservation laws for Volterra chain with initial step-like condition
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 63-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work we study a system of equations in the Volterra chain with initial step-like condition. The solutions to the Cauchy problem are sought in the class of positive functions. The nature of the problem is in some sense close to the problem on collapse of a discontinuity for the Korteweg-de-Vries equation. We show that the solution to the Cauchy problem for the Volterra chani can be constructed as a Taylor series. For bounded initial conditions, we obtain estimates implying that the convergence series exceeds zero. We formulate a local existence and uniqueness theorem for the solution to the Cauchy problem with bounded initial conditions. We consider a special condition of the break of the Volterra chain: $b_nb_{n+1}=1$, $n\ge N\ge2$. We provide specified estimates for solutions of the break of the chain. We prove that under the break, the solutions to the chain are defined for all positive time. We also establish two conservation laws for the broken chain. One of the laws follows the break condition, while the other is implied by the Lagrange property.
Keywords: Langmuir chain, integrable systems, conservation laws, problem on collapse of an initial discontinuity.
Mots-clés : Volterra chain
@article{UFA_2019_11_1_a4,
     author = {R. Ch. Kulaev and A. B. Shabat},
     title = {Conservation laws for {Volterra} chain with initial step-like condition},
     journal = {Ufa mathematical journal},
     pages = {63--69},
     year = {2019},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a4/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
AU  - A. B. Shabat
TI  - Conservation laws for Volterra chain with initial step-like condition
JO  - Ufa mathematical journal
PY  - 2019
SP  - 63
EP  - 69
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a4/
LA  - en
ID  - UFA_2019_11_1_a4
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%A A. B. Shabat
%T Conservation laws for Volterra chain with initial step-like condition
%J Ufa mathematical journal
%D 2019
%P 63-69
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a4/
%G en
%F UFA_2019_11_1_a4
R. Ch. Kulaev; A. B. Shabat. Conservation laws for Volterra chain with initial step-like condition. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 63-69. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a4/

[1] V. Volterra, Lecóns sur la théorie mathematique de la lutte pour la vie, Gauthiers-Villars, Paris, 1931 | MR

[2] B.G. Konopelchenko, G. G.Ortenzi, “Parabolic regularization of the gradient catastrophes for the Burgers-Hopf equation and Jordan chain”, J. Phys. A: Math. Theor., 51:27 (2018), 201–220 | DOI | MR

[3] R.N. Garifullin, A.B. Shabat, “The structure of polynomial conservation laws”, Theoret. Math. Phys., 161:3 (2009), 1590–1598 | DOI | MR | Zbl

[4] V.L. Vereshchagin, “Asimptotic behaviour of the solution of the Cauchy problem for the Volterra chain with step-like initial data”, Theor. Math. Phys., 111:3 (1997), 658–666 | DOI | DOI | MR | Zbl

[5] V.V. Kozlov, D.V. Treschev, “Polynomial integrals of Hamiltonian systems with exponential interaction”, Math. USSR-Izv., 34:3 (1990), 555–574 | DOI | MR | Zbl | Zbl

[6] A.I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl

[7] S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of solitons. The inverse scattering method, Contem. Soviet Math., Plenum Publ. Corp., New York, 1984 | MR | MR | Zbl

[8] A.V. Gurevich, L.P. Pitayevskii, “Nonstationary structure of a collisionless shock wave”, Soviet Phys.-JETP, 38:2 (1974), 291–297

[9] B.A. Dubrovin, S.P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl

[10] I.T. Habibullin, “Symmetries of boundary problems”, Phys. Lett. A, 178:5 (1993), 369–375 | DOI | MR