@article{UFA_2019_11_1_a3,
author = {S. B. Klimentov},
title = {On isomorphism of some functional spaces under action of integro-differential operators},
journal = {Ufa mathematical journal},
pages = {42--62},
year = {2019},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/}
}
S. B. Klimentov. On isomorphism of some functional spaces under action of integro-differential operators. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/
[1] I.N. Vekua, Generalized analytic functions, Int. Ser. Monog. Pure Appl. Math., 25, Pergamon Press, Oxford, 1962 | MR | Zbl
[2] B.V. Boyarsky, “Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients”, Matem. Sborn., 43:4 (1957), 451–503 (in Russian)
[3] S.B. Klimentov, “On a method of constructing the solutions of boundary-value problems of the theory of bendings of surfaces of positive curvature”, Journal of Mathematical Sciences, 51:2 (1990), 2230–2248 | MR | Zbl | Zbl
[4] V.S. Vinogradov, “On the solvability of a singular integral equation”, Sov. Math. Dokl., 19 (1978), 827–829 | MR | Zbl
[5] V.S. Vinogradov, “Structure of regularizers for elliptic boundary-value problems in the plane”, Differ. Equat., 26:1 (1990), 14–20 | MR | Zbl
[6] S.B. Klimentov, “Another version of Kellogg's theorem”, Complex Variables and Elliptic Equations, 60:12 (2015), 1647–1657 | DOI | MR | Zbl
[7] G.S. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, Math. Appl., 523, Kluwer Academic Publ., Dordrecht, 2000 | MR | Zbl
[8] S.B. Klimentov, “On combinations of the circle shifts and some one-dimensional integral operators”, Vladikavkaz. Matem. Zhurn., 19:1 (2017), 30–40 (in Russian) | MR
[9] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions”, Comm. Pure Appl. Math., XII (1959), 623–727 | DOI | MR | Zbl
[10] V.N. Monakhov, Boundary-value problems with free boundaries for elliptic systems of equations, Transl. Math. Monog., 57, Amer. Math. Soc., Providence, R.I., 1983 | DOI | MR | Zbl
[11] V.A. Danilov, “Estimates of distortion of quasiconformal mapping in space $C^m_\alpha$”, Siber. Math. J., 14:3 (1973), 362–369 | DOI | MR | Zbl
[12] S. Sternberg, Lectures on differential geometry, Prentice-Hall Inc., Englewood Cliffs, 1964 | MR | Zbl
[13] F.D. Gakhov, Boundary value problems, Dover Publications, New York, 1990 | MR | Zbl
[14] S.B. Klimentov, “Representations of the “second kind” for the Hardy classes of solutions to the Beltrami equation”, Siber. Math. J., 55:2 (2014), 262–275 | DOI | MR | Zbl
[15] S.B. Klimentov, “The Riemann-Hilbert problem in Hardy classes for general first-order elliptic systems”, Russ. Math. Izv. VUZ, 60:6 (2016), 29–39 | DOI | MR | Zbl
[16] M.A. Naimark, Normed rings, Wolters-Noordhoff Publishing, Groningen, 1968 | MR | MR