On isomorphism of some functional spaces under action of integro-differential operators
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 42-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider representations of the second kind for solutions to the linear general uniform first order elliptic system in the unit circle $D= \{z : |z| \leq 1\}$ written in terms of complex functions: \begin{equation*} \mathcal D w \equiv \partial_{\bar z} w + q_1(z) \partial_z w + q_2(z) \partial_{\bar z} \overline w +A(z)w+B(z) \overline w=R(z), \end{equation*} where $w=w(z)=u(z)+iv(z)$ is the sought complex function, $q_1(z)$ and $q_2(z)$ are given measurable complex functions satisfying the uniform ellipticity condition of the system: \begin{equation*} |q_1(z)| + |q_2(z)| \leq q_0 = {\rm const}1,\, z\in \overline D, \end{equation*} and $A(z),\,B(z), \,R(z)\in L_p(\overline D)$, $p>2$, are also given complex functions. The representation of the second kind is based on the well–known Pompeiu's formula: if $w\in W^1_p(\overline D)$, $p>2$, then \begin{equation*} \displaystyle w(z) = \dfrac{1}{2 \pi i} \int\limits_{\Gamma} \dfrac{w(\zeta)}{\zeta-z}d \zeta - \dfrac{1}{\pi}\iint\limits_D \dfrac{\partial w}{\partial \bar z} \cdot \dfrac{d \xi d \eta}{\zeta-z}, \end{equation*} where $w(z) \in W^1_p(\overline D)$, $p>2$. Then for the solution $w(z)$ we can write the representation \begin{equation*} \Omega(w) = \dfrac{1}{2 \pi i} \int\limits_{\Gamma} \dfrac{w(\zeta)}{\zeta-z}d \zeta +TR(z) \end{equation*} where \begin{equation*} \Omega(w) \equiv w(z) + T ( q_1(z) \partial_z w + q_2(z) \partial_{\bar z} \overline w +A(z)w + B(z) \overline w). \end{equation*} Under appropriate assumptions about on coefficients we prove that $\Omega$ is the isomorphism of the spaces $C^k_\alpha (\overline D) $ and $W^k_p (\overline D) $, $k\geq $1, $0 \alpha $1, $p> $2. These results develop and complete B.V. Boyarsky's works, where representations of the first kind were obtained. Also this work complete author's results on representations of the second kind with more difficult operators. As an implication of the properties of the operator $\Omega$, we obtain apriori estimates for the norms $\|w\|_{C^{k+1}_{\alpha}(\overline D)}$ and $\|w\|_{W^{k}_{p}(\overline D)}$.
Keywords: general elliptic first order system, representation of the second kind.
@article{UFA_2019_11_1_a3,
     author = {S. B. Klimentov},
     title = {On isomorphism of some functional spaces under action of integro-differential operators},
     journal = {Ufa mathematical journal},
     pages = {42--62},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - On isomorphism of some functional spaces under action of integro-differential operators
JO  - Ufa mathematical journal
PY  - 2019
SP  - 42
EP  - 62
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/
LA  - en
ID  - UFA_2019_11_1_a3
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T On isomorphism of some functional spaces under action of integro-differential operators
%J Ufa mathematical journal
%D 2019
%P 42-62
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/
%G en
%F UFA_2019_11_1_a3
S. B. Klimentov. On isomorphism of some functional spaces under action of integro-differential operators. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/