On isomorphism of some functional spaces under action of integro-differential operators
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 42-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider representations of the second kind for solutions to the linear general uniform first order elliptic system in the unit circle $D= \{z : |z| \leq 1\}$ written in terms of complex functions: \begin{equation*} \mathcal D w \equiv \partial_{\bar z} w + q_1(z) \partial_z w + q_2(z) \partial_{\bar z} \overline w +A(z)w+B(z) \overline w=R(z), \end{equation*} where $w=w(z)=u(z)+iv(z)$ is the sought complex function, $q_1(z)$ and $q_2(z)$ are given measurable complex functions satisfying the uniform ellipticity condition of the system: \begin{equation*} |q_1(z)| + |q_2(z)| \leq q_0 = {\rm const}1,\, z\in \overline D, \end{equation*} and $A(z),\,B(z), \,R(z)\in L_p(\overline D)$, $p>2$, are also given complex functions. The representation of the second kind is based on the well–known Pompeiu's formula: if $w\in W^1_p(\overline D)$, $p>2$, then \begin{equation*} \displaystyle w(z) = \dfrac{1}{2 \pi i} \int\limits_{\Gamma} \dfrac{w(\zeta)}{\zeta-z}d \zeta - \dfrac{1}{\pi}\iint\limits_D \dfrac{\partial w}{\partial \bar z} \cdot \dfrac{d \xi d \eta}{\zeta-z}, \end{equation*} where $w(z) \in W^1_p(\overline D)$, $p>2$. Then for the solution $w(z)$ we can write the representation \begin{equation*} \Omega(w) = \dfrac{1}{2 \pi i} \int\limits_{\Gamma} \dfrac{w(\zeta)}{\zeta-z}d \zeta +TR(z) \end{equation*} where \begin{equation*} \Omega(w) \equiv w(z) + T ( q_1(z) \partial_z w + q_2(z) \partial_{\bar z} \overline w +A(z)w + B(z) \overline w). \end{equation*} Under appropriate assumptions about on coefficients we prove that $\Omega$ is the isomorphism of the spaces $C^k_\alpha (\overline D) $ and $W^k_p (\overline D) $, $k\geq $1, $0 \alpha $1, $p> $2. These results develop and complete B.V. Boyarsky's works, where representations of the first kind were obtained. Also this work complete author's results on representations of the second kind with more difficult operators. As an implication of the properties of the operator $\Omega$, we obtain apriori estimates for the norms $\|w\|_{C^{k+1}_{\alpha}(\overline D)}$ and $\|w\|_{W^{k}_{p}(\overline D)}$.
Keywords: general elliptic first order system, representation of the second kind.
@article{UFA_2019_11_1_a3,
     author = {S. B. Klimentov},
     title = {On isomorphism of some functional spaces under action of integro-differential operators},
     journal = {Ufa mathematical journal},
     pages = {42--62},
     year = {2019},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - On isomorphism of some functional spaces under action of integro-differential operators
JO  - Ufa mathematical journal
PY  - 2019
SP  - 42
EP  - 62
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/
LA  - en
ID  - UFA_2019_11_1_a3
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T On isomorphism of some functional spaces under action of integro-differential operators
%J Ufa mathematical journal
%D 2019
%P 42-62
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/
%G en
%F UFA_2019_11_1_a3
S. B. Klimentov. On isomorphism of some functional spaces under action of integro-differential operators. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a3/

[1] I.N. Vekua, Generalized analytic functions, Int. Ser. Monog. Pure Appl. Math., 25, Pergamon Press, Oxford, 1962 | MR | Zbl

[2] B.V. Boyarsky, “Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients”, Matem. Sborn., 43:4 (1957), 451–503 (in Russian)

[3] S.B. Klimentov, “On a method of constructing the solutions of boundary-value problems of the theory of bendings of surfaces of positive curvature”, Journal of Mathematical Sciences, 51:2 (1990), 2230–2248 | MR | Zbl | Zbl

[4] V.S. Vinogradov, “On the solvability of a singular integral equation”, Sov. Math. Dokl., 19 (1978), 827–829 | MR | Zbl

[5] V.S. Vinogradov, “Structure of regularizers for elliptic boundary-value problems in the plane”, Differ. Equat., 26:1 (1990), 14–20 | MR | Zbl

[6] S.B. Klimentov, “Another version of Kellogg's theorem”, Complex Variables and Elliptic Equations, 60:12 (2015), 1647–1657 | DOI | MR | Zbl

[7] G.S. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, Math. Appl., 523, Kluwer Academic Publ., Dordrecht, 2000 | MR | Zbl

[8] S.B. Klimentov, “On combinations of the circle shifts and some one-dimensional integral operators”, Vladikavkaz. Matem. Zhurn., 19:1 (2017), 30–40 (in Russian) | MR

[9] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions”, Comm. Pure Appl. Math., XII (1959), 623–727 | DOI | MR | Zbl

[10] V.N. Monakhov, Boundary-value problems with free boundaries for elliptic systems of equations, Transl. Math. Monog., 57, Amer. Math. Soc., Providence, R.I., 1983 | DOI | MR | Zbl

[11] V.A. Danilov, “Estimates of distortion of quasiconformal mapping in space $C^m_\alpha$”, Siber. Math. J., 14:3 (1973), 362–369 | DOI | MR | Zbl

[12] S. Sternberg, Lectures on differential geometry, Prentice-Hall Inc., Englewood Cliffs, 1964 | MR | Zbl

[13] F.D. Gakhov, Boundary value problems, Dover Publications, New York, 1990 | MR | Zbl

[14] S.B. Klimentov, “Representations of the “second kind” for the Hardy classes of solutions to the Beltrami equation”, Siber. Math. J., 55:2 (2014), 262–275 | DOI | MR | Zbl

[15] S.B. Klimentov, “The Riemann-Hilbert problem in Hardy classes for general first-order elliptic systems”, Russ. Math. Izv. VUZ, 60:6 (2016), 29–39 | DOI | MR | Zbl

[16] M.A. Naimark, Normed rings, Wolters-Noordhoff Publishing, Groningen, 1968 | MR | MR