Mots-clés : Subordination, coefficient estimates
@article{UFA_2019_11_1_a11,
author = {Gurmeet Singh and Gagandeep Singh and Gurcharanjit Singh},
title = {A new subclass of univalent functions},
journal = {Ufa mathematical journal},
pages = {133--140},
year = {2019},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a11/}
}
Gurmeet Singh; Gagandeep Singh; Gurcharanjit Singh. A new subclass of univalent functions. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 133-140. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a11/
[1] R.N. Das, P. Singh, “On subclasses of schlicht mapping”, Indian J. Pure Appl. Math., 8:8 (1977), 864–872 | MR | Zbl
[2] C.Y. Gao, S.Q. Zhou, “On a class of analytic functions related to the starlike functions”, Kyungpook Math. J., 45:1 (2005), 123–130 | MR | Zbl
[3] R.M. Goel, Beant Singh Mehrok, “A subclass of univalent functions”, Houston J. Math., 8:3 (1982), 343–357 | MR | Zbl
[4] W. Kaplan, “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl
[5] F.R. Keogh, E.P. Merkes, “A coefficient inequality for certain class of analytic functions”, Proc. Amer. Math. Soc., 20:1 (1969), 8–12 | DOI | MR | Zbl
[6] W. Koepf, “On the Fekete-Szegö problem for close-to-convex functions”, Proc. Amer. Math. Soc., 10:1 (1993), 89–95 | MR
[7] J. Kowalczyk, E. Les-Bomba, “On a subclass of close-to-convex functions”, Appl. Math. Letters, 23:10 (2010), 1147–1151 | DOI | MR | Zbl
[8] R.J. Libera, E.J. Zlotkiewicz, “Coefficient bounds for the inverse of a function with derivative in $\rho$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl
[9] J.K. Prajapat, “A new subclass of close-to-convex functions”, Surv. Math. Appl., 11 (2016), 11–19 | MR | Zbl
[10] K. Sakaguchi, “On a certain univalent mapping”, J. Math. Soc. Japan, 11:1 (1959), 72–75 | DOI | MR | Zbl
[11] Amit Soni, Shashi Kant, “A new subclass of close-to-convex functions with Fekete-Szegö problem”, J. Rajasthan Acad. Phy. Sci., 12:2 (2013), 1–14 | MR