Mots-clés : Painlevé equations
@article{UFA_2018_10_4_a8,
author = {V. A. Pavlenko and B. I. Suleimanov},
title = {Solutions to analogues of non-stationary {Schr\"odinger} equations defined by isomonodromic {Hamilton} system $H^{2+1+1+1}$},
journal = {Ufa mathematical journal},
pages = {92--102},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a8/}
}
TY - JOUR
AU - V. A. Pavlenko
AU - B. I. Suleimanov
TI - Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$
JO - Ufa mathematical journal
PY - 2018
SP - 92
EP - 102
VL - 10
IS - 4
UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a8/
LA - en
ID - UFA_2018_10_4_a8
ER -
%0 Journal Article
%A V. A. Pavlenko
%A B. I. Suleimanov
%T Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$
%J Ufa mathematical journal
%D 2018
%P 92-102
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a8/
%G en
%F UFA_2018_10_4_a8
V. A. Pavlenko; B. I. Suleimanov. Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 92-102. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a8/
[1] A. Bloemendal, B. Virag, “Limits of spiked random matrices I”, Probability Theory and Related Fields, 156:3–4 (2013), 795–825 | DOI | MR | Zbl
[2] A. Bloemendal, B. Virag, Limits of spiked random matrices II, 2011, arXiv: ; Ann. Probab., 44:4 (2016), 2726–2769 1109.3704 | MR | DOI | Zbl
[3] R. Conte, “Generalized Bonnet surfaces and Lax pairs of PVI”, J. Math. Phys., 58:10 (2017), 103508, 31 pp. | DOI | MR | Zbl
[4] R. Conte, I. Dornic, “The master Painlevé VI heat equation”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR | Zbl
[5] R. Garnier, “Sur des equations differentielles du troisieme ordre dont l'integrale generale est uniforme et sur une classe d'equations nouvelles d'ordre superieur dont l'integrale generale a ses points critiques fixes”, Ann. Sci. Ecole Normale Sup (3), 29 (1912), 1–126 (in French) | DOI | MR | Zbl
[6] T. Grava, A. Its, A. Kapaev, F. Mezzadri, “On the Tracy-Widom$_\beta$ Distribution for $\beta = 6$”, SIGMA, 12 (2016), 105, 26 pp. | MR | Zbl
[7] A. M. Grundland, D. Riglioni, “Classical-quantum correspondence for shape-invariant systems”, J. Phys. A, 48:24 (2015), 245201–245215 | DOI | MR
[8] H. Kawakami, A. Nakamura, H. Sakai, “Toward a classification of 4-dimensional Painleve-type equations”, Algebraic and geometric aspects of integrable systems and random matrices, Proc. AMS special session (Boston, 2012), Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 143–162 | DOI | MR
[9] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of 4-dimensional Painleve-type equations, 2012, arXiv: 1209.3836 | MR
[10] H. Kimura, “The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure”, Annali di Matematica pura et applicata IV, 155:1 (1989), 25–74 | DOI | MR | Zbl
[11] A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Planck Constant as Spectral Parameter in Integrable Systems and KZB Equations”, Journal of High Energy Physics, 2014:109 (2014), 29 pp. | DOI | MR
[12] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations”, J. Math. Phys., 52:8 (2011), 16 pp. | DOI | MR | Zbl
[13] H. Nagoya, Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Annales Henri Poincare, 15:3 (2014), 313–344 | DOI | MR | Zbl
[14] D. P. Novikov, “A monodromy problem and some functions connected with Painlevé 6”, Proceedings of International Conference, International Conference “Painleve equations and Related Topics”, Euler International Mathematical Institute, St.-Petrsburg, 2011, 118–121
[15] H. Rosengren, Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation, 2013, arXiv: 1312.5879 | MR
[16] H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Commun. Math. Phys., 349:3 (2015), 1143–1170 | DOI | MR
[17] I. Rumanov, “Hard edge for beta-ensembles and Painleve III”, Int. Math. Res. Not., 2014, no. 23, 6576–6617 | DOI | MR | Zbl
[18] I. Rumanov, “Classical integrability for beta-ensembles and general Fokker-Planck equations”, J. Math. Phys., 56:1 (2015), 013508, 16 pp. | DOI | MR | Zbl
[19] I. Rumanov, “Beta ensembles, quantum Painlevé equations and isomonodromy systems”, Algebraic and geometric aspects of integrable systems and random matrices, Proc. AMS special session (Boston, 2012), Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 125–155 | DOI | MR
[20] I. Rumanov, “Painlevé representation of Tracy-Widom$_\beta$ distribution for $\beta = 6$”, Comm. Math. Phys., 342:3 (2016), 843–868 | DOI | MR | Zbl
[21] H. Sakai, Isomonodromic deformation and 4-dimensional Painleve-type equations, preprint, University of Tokyo, Mathematical Scinces, Tokyo, 2010 ; H. Sakai, “Isomonodromic deformation and 4-dimensional Painleve-type equations”, MSJ Memoirs, 37 (2018), 1–23 | Zbl
[22] Y. Sasano, Symmetric Hamiltonian of the Garnier system and its degenarate system in two variables, 2011, arXiv: 0706.0799v.5
[23] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields”, Publ. Rims Kyoto Univ., 15:17 (1979), 201–278 | DOI | MR | Zbl
[24] A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507, 19 pp. | DOI | MR | Zbl
[25] A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 | DOI | MR | Zbl
[26] A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theor. Math. Phys., 177:1 (2013), 1281–1338 | DOI | DOI | MR | Zbl
[27] A. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann-Hilbert approach, Math. Surv. Monog., 128, Amer. Math. Socs., Providence, RI, 2006 | DOI | MR
[28] A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russ. Math. Surv., 69:1 (2014), 35–118 | DOI | DOI | MR | Zbl
[29] D. P. Novikov, “The $2\times2$ matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system”, Theor. Math. Phys., 161:2 (2009), 1485–1496 | DOI | DOI | MR | Zbl
[30] D. P. Novikov, R. K. Romanovsky, S. G. Sadovnichuk, Some new methods of finite-gap integration of soliton equations, Nauka, Novosibirsk, 2013 (in Russian)
[31] D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theor. Math. Phys., 187:1 (2016), 479–496 | DOI | DOI | MR | Zbl
[32] V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$”, Ufa Math. J., 9:4 (2017), 97–107 | DOI | MR
[33] B. I. Suleimanov, “Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations”, Asymptotic Properties of Solutions of Differential Equations, Math. Inst., Ufa, 1988, 93–102 (in Russian)
[34] B. I. Suleimanov, “Hamiltonian property of the Painlevé equations and the method of isomonodromic deformations”, Diff. Equat., 30:5 (1994), 726–732 | MR | MR | Zbl
[35] B.I. Suleimanov, ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its $L-A$ pairs”, Theor. Math. Phys., 156:3 (2008), 1280–1291 | DOI | DOI | MR | MR | Zbl
[36] B. I. Suleimanov, ““Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207 | DOI | DOI | MR | Zbl
[37] B. I. Suleimanov, “Quantization of some autonomous reduction of Painlevé equations and the old quantum theory”, 23rd joint session of Moscow Mathematical Society and the Seminar named after I. G. Petrovskii (Moscow, 2011), 356–357 (in Russian)
[38] B. I. Suleimanov, ““Quantum” linearization of Painlevé equations as a component of their $L-A$ pairs”, Ufa Math. J., 4:2 (2012), 127–136 | MR
[39] B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154 | DOI | MR