On some linear operators on Fock type space
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 85-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a lower semi-continuous function $\varphi$ in $\mathbb{R}^n$ depending on the absolute values of the variables and growing faster than $a \ln (1 + \Vert x \Vert)$ for each positive $a$. In terms of this function, we define a Hilbert space $F^2_{\varphi}$ of entire functions in $\mathbb{C}^n$. This is a natural generalization of a classical Fock space. In this paper we provide an alternative description of the space $F^2_{\varphi}$ in terms of the coefficients in the power expansions for the entire functions in this space. We mention simplest properties of reproducing kernels in the space $F^2_{\varphi}$. We consider the orthogonal projector from the space $L^2_{\varphi}$ of measurable complex-valued functions $f$ in $\mathbb{C}^n$ such that $$ \Vert f \Vert_{\varphi}^2 = \int_{\mathbb{C}^n} \vert f(z)\vert^2 e^{- 2 \varphi (\mathrm{abs}\, z)} \ d \mu_n (z) \infty , $$ where $z =(z_1, \ldots , z_n)$, $\mathrm{abs}\, z = (\vert z_1 \vert, \ldots , \vert z_1 \vert)$, on its closed subspace $F^2_{\varphi}$, and for this projector we obtain an integral representation. We also obtain an integral formula for the trace of a positive linear continuous operator on the space $F^2_{\varphi}$. By means of this formula we find the conditions, under which a weighted operator of the composition on $F^2_{\varphi}$ is a Hilbert–Schmidt operator. Two latter results generalize corresponding results by Sei-Ichiro Ueki, who studied similar questions for operators in Fock space.
Keywords: entire functions, Fock type space, linear operators, operator trace, weighted composition operators, Hilbert–Schmidt operator.
@article{UFA_2018_10_4_a7,
     author = {I. Kh. Musin},
     title = {On some linear operators on {Fock} type space},
     journal = {Ufa mathematical journal},
     pages = {85--91},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a7/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - On some linear operators on Fock type space
JO  - Ufa mathematical journal
PY  - 2018
SP  - 85
EP  - 91
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a7/
LA  - en
ID  - UFA_2018_10_4_a7
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T On some linear operators on Fock type space
%J Ufa mathematical journal
%D 2018
%P 85-91
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a7/
%G en
%F UFA_2018_10_4_a7
I. Kh. Musin. On some linear operators on Fock type space. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 85-91. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a7/